OCR Maths FP3

Mark Scheme Pack

2006-2014

1 Directions $[1, 1, -1]$ and $[2, -3, 1]$	B1	For identifying both directions (may be implied by working)
$\theta = \cos^{-1} \frac{ [1, 1, -1] \cdot [2, -3, 1] }{\sqrt{3} \sqrt{14}}$	M1	For using scalar product of their direction vectors
$=\cos^{-1}\frac{ -2 }{\sqrt{42}}$	M1	For completely correct process for their angle
= 72.0°, 72° or 1.26 rad	A1 4	For correct answer
2 (i) Identities <i>b</i> , 6 Subgroups { <i>b</i> , <i>d</i> }, {6, 4}	B1 B1 B1 B1 4	For correct identities For correct subgroups
(ii) $\{a, b, c, d\} \leftrightarrow \{2, 6, 8, 4\}$ or $\{8, 6, 2, 4\}$	B1 B1	For $b \leftrightarrow 6$, $d \leftrightarrow 4$
	B1 3	For $a, c \leftrightarrow 2, 8$ in either order
		SR If B0 B0 B0 then M1 A1 may be awarded for stating the orders of all elements in G and H
	7	
$3 \textbf{(i)} 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}x}$	M1	For differentiating substitution
$\Rightarrow \frac{\mathrm{d}z}{\mathrm{d}x} + 2xz = \mathrm{e}^{-x^2}$	A1	For resulting equation in z and x
Integrating factor $\left(e^{\int 2x dx} = \right)e^{x^2}$	B1 √	For correct IF f.t. for an equation in suitable form
$\Rightarrow \frac{d}{dx} \left(z e^{x^2} \right) OR \frac{d}{dx} \left(y^3 e^{x^2} \right) = 1$	M1	For using IF correctly
$\Rightarrow z e^{x^2} OR y^3 e^{x^2} = x (+c)$	A1	For correct integration ($+c$ not required here)
$\Rightarrow y = (x+c)^{\frac{1}{3}} e^{-\frac{1}{3}x^2}$	A1 6	For correct answer AEF
(ii) As $x \to \infty$, $y \to 0$	B1 1	For correct statement
4 (i) $\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$,	B1	For either expression, seen or implied
$\sin\theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$		z may be used for $e^{i\theta}$ throughout
$\Rightarrow \cos^2 \theta \sin^4 \theta = \frac{1}{4} \left(e^{i\theta} + e^{-i\theta} \right)^2 \frac{1}{16} \left(e^{i\theta} - e^{-i\theta} \right)^4$		
$= \frac{1}{4} \left(e^{2i\theta} + 2 + e^{-2i\theta} \right) \cdot \frac{1}{16} \left(e^{4i\theta} - 4e^{2i\theta} + 6 - 4e^{-2i\theta} + e^{-4i\theta} \right)$	M1 A1 A1	For expanding terms For the 2 correct expansions SR Allow A1 A0 for $k(e^{2i\theta} + 2 + e^{-2i\theta})(e^{4i\theta} - 4e^{2i\theta} + 6 - 4e^{-2i\theta} + e^{-4i\theta}), k \neq \frac{1}{64}$
$= \frac{1}{64} \left(\left(e^{6i\theta} + e^{-6i\theta} \right) - 2 \left(e^{4i\theta} + e^{-4i\theta} \right) - \left(e^{2i\theta} + e^{-2i\theta} \right) + 4 \right)$	M1	For grouping terms and using multiple angles
$=\frac{1}{32}(\cos 6\theta - 2\cos 4\theta - \cos 2\theta + 2) \mathbf{AG}$	A1 6	For answer obtained correctly

	1	
$(ii) \int_0^{\frac{1}{3}\pi} \cos^2 \theta \sin^4 \theta d\theta =$		
$= \frac{1}{32} \left[\frac{1}{6} \sin 6\theta - \frac{1}{2} \sin 4\theta - \frac{1}{2} \sin 2\theta + 2\theta \right]_0^{\frac{1}{3}\pi}$	M1 A1	For integrating answer to (i) For all terms correct
$= \frac{1}{32} \left[0 + \frac{1}{4} \sqrt{3} - \frac{1}{4} \sqrt{3} + \frac{2}{3} \pi - 0 \right] = \frac{1}{48} \pi$	A1 3	For correct answer
	9	
5 (i)	B1	For correct modulus AEF
EITHER $\mathbf{z} = \sqrt{8} \operatorname{cis}(2k+1)^{\frac{\pi}{2}} k = 0, 1, 2, 3$		
$z = \sqrt{8}\operatorname{cis}(2k+1)\frac{\pi}{4}, \ k = 0, 1, 2, 3$		
OR $z = \sqrt{8} e^{(2k+1)\frac{\pi}{4}i}, k = 0, 1, 2, 3$	B1 2	For correct arguments AEF
(ii)		
$z = 2\sqrt{2} \left\{ \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i, \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i \right\}$	B1	For any of $\pm \frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}} i$
z = 2 + 2i, -2 + 2i, -2 - 2i, 2 - 2i	B1	For any one value of z correct
	B1	For all values of z correct AEFcartesian (may be implied from symmetry or factors)
$(z-\alpha), (z-\beta), (z-\gamma), (z-\delta)$	B1 √ 4	f.t., where $\alpha, \beta, \gamma, \delta$ are answers above
(iii) EITHER $(z-(2+2i))(z-(2-2i))$	M1	For combining factors from (ii) in pairs
$\times (z - (-2 + 2i))(z - (-2 - 2i))$	M1	Use of complex conjugate pairs
$= (z^2 + 4z + 8)(z^2 - 4z + 8)$	A1	For correct answer
$OR z^4 + 64 = (z^2 + az + b)(z^2 + cz + d)$	M1	For equating coefficients
$\Rightarrow a + c = 0, b + ac + d = 0, ad + bc = 0, bd = 64$	M1	For solving equations
Obtain $(z^2 + 4z + 8)(z^2 - 4z + 8)$	A1 3	For correct answer
	9	
6 (i) $MB = [2, 1, -2]$, $OF = [4, 1, 2]$ $MB \times OF$	B1 M1	For either vector correct (allow multiples) For finding vector product of their MB and
= [4, -12, -2] OR k[2, -6, -1]	A1 3	OF For correct vector
(ii) EITHER Find vector product of any two of $\pm [2, -1, 2], \pm [0, 0, 2], \pm [2, -1, 0]$	M1	For finding two relevant vector products
and any two of $\pm [4, 0, 2]$, $\pm [4, -1, 0]$, $\pm [0, 1, 2]$		
Obtain $k[1, 2, 0]$	A1	For correct LHS of plane CMG
Obtain $k[1, 4, -2]$	A1	For correct LHS of plane <i>OEG</i>
x + 2y = 2 and $x + 4y - 2z = 0$	M1 A1	For substituting a point into each equation
$R = \frac{x + 2y = 2 \text{ and } x + 4y - 2z = 0}{OR \text{ Use } ax + by + cz = d \text{ with}}$		For both equations correct AEF
coordinates	M1	For use of cartesian equation of plane
of C, M, G OR O, E, G substituted		
Obtain $a:b:c=1:2:0$ for CMG	A1	For correct ratio
Obtain $a:b:c=1:4:-2$ for OEG	A1 M1	For correct ratio
x + 2y = 2 and $x + 4y - 2z = 0$	A1 5	For substituting a point into each equation For both equations correct AEF
y = and w + 1y = 22 = 0	111 0	1 of sour equations confect fills

	1	
(iii) EITHER Put x , y OR $z = t$ in planes OR evaluate $k[1, 2, 0] \times k[1, 4, -2]$	M1	For solving plane equations in terms of a parameter <i>OR</i> for finding vector product of
Objects on the sections		normals to planes from (ii)
Obtain $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ where $\mathbf{a} = [0, 1, 2], [2, 0, 1] OR [4, -1, 0]$	A1	Obtain a correct point AEF
$\mathbf{b} = k[-2, 1, 1]$	A1 3	Obtain correct direction AEF
	11	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	111	
7 (i) $(x^{-1}ax)^m = (x^{-1}ax)(x^{-1}ax)(x^{-1}ax)$	M1	For considering powers of $x^{-1}ax$
$= x^{-1}a a \dots a x, \text{ associativity, } xx^{-1} = e$	A1 A1	For using associativity and inverse properties
$= x^{-1}a^m x = x^{-1}e x$ when $m = n$,	B1	For using order of a correctly
not m < n		
$=x^{-1}x$	A1	For using property of identity
$=e \implies \text{order } n$	A1 6	For correct conclusion
(ii) <i>EITHER</i> $(x^{-1}ax)z = e$	M1	For attempt to solve for z AEF
$\Rightarrow axz = xe = x \implies xz = a^{-1}x$	A1	For using pre- or post multiplication
$\Rightarrow z = x^{-1}a^{-1}x$	A1	For correct answer
OR Use $(pq)^{-1} = q^{-1}p^{-1}$	M1	For applying inverse of a product of
$OR(pqr)^{-1} = r^{-1}q^{-1}p^{-1}$	IVII	For applying inverse of a product of elements
State $(x^{-1})^{-1} = x$	A1	For stating this property
Obtain $x^{-1}a^{-1}x$	A1 3	For correct answer with no incorrect
		working
		SR correct answer with no working scores B1 only
(iii) $ax = xa \implies x = a^{-1}xa$	M1	Start from commutative property for ax
$\Rightarrow xa^{-1} = a^{-1}x$	A1 2	Obtain commutative property for $a^{-1}x$
	11	Columbia and property for a "
8 (i) $m^2 + 2km + 4 = 0$	M1	For stating and attempting to solve
		auxiliary eqn
$\Rightarrow m = -k \pm \sqrt{k^2 - 4}$	A1 2	For correct solutions, at any stage AEF
(a) $x = e^{-kt} \left(A e^{\sqrt{k^2 - 4}t} + B e^{-\sqrt{k^2 - 4}t} \right)$	M1	For using $e^{f(t)}$ with distinct real roots of
	A1 2	aux eqn For correct answer AEF
$-kt\left(-i\sqrt{A_1k^2}, -i\sqrt{A_1k^2},\right)$	N 1 4	For using $e^{f(t)}$ with complex roots of aux
(b) $x = e^{-kt} \left(A e^{i\sqrt{4-k^2}t} + B e^{-i\sqrt{4-k^2}t} \right)$	M1	eqn
		This form may not be seen explicitly but if stated as final answer earns M1 A0
$x = e^{-kt} \left(A' \cos \sqrt{4 - k^2} t + B' \sin \sqrt{4 - k^2} t \right)$	A1 2	For correct answer
OR $x = e^{-kt} \left(C' \frac{\cos}{\sin} \left(\sqrt{4 - k^2} t + \alpha \right) \right)$		
(c) $x = e^{-2t} (A'' + B''t)$	M1	For using $e^{f(t)}$ with equal roots of aux eqn
()	A1 2	For correct answer. Allow k for 2

(ii)(a) $x = B'e^{-t} \sin \sqrt{3}t$ $\dot{x} = B'e^{-t} \left(\sqrt{3}\cos \sqrt{3}t - \sin \sqrt{3}t\right)$	B1 √ M1 A1 √	For using $t = 0$, $x = 0$ correctly. f.t. from (b) For differentiating x For correct expression. f.t. from their x
$t = 0, \dot{x} = 6 \Rightarrow B' = 2\sqrt{3}, \ x = 2\sqrt{3}e^{-t}\sin\sqrt{3}t$	A1 4	For correct solution AEF SR $$ and AEF OK for $x = C'e^{-t}\cos\left(\sqrt{3}t + \frac{1}{2}\pi\right)$
(b) $x \rightarrow 0$	B1	For correct statement
$e^{-t} \rightarrow 0$ and sin() is bounded	B1 2	For both statements

		
1 (a) Identity = 1+0i	B1	For correct identity. Allow 1
Inverse = $\frac{1}{1+2i}$	B1	For $\frac{1}{1+2i}$ seen or implied
$= \frac{1}{1+2i} \times \frac{1-2i}{1-2i} = \frac{1}{5} - \frac{2}{5}i$	B1 3	For correct inverse AEFcartesian
(b) Identity = $ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $	B1	For correct identity
Inverse = $ \begin{pmatrix} -3 & 0 \\ 0 & 0 \end{pmatrix} $	B1 2	For correct inverse
	5	
2 (a) $(z_1 z_2 =) 6e^{\frac{5}{12}\pi i}$	B1	For modulus = 6
2 (a) (2 ₁ 2 ₂ -) 60	B1	For argument = $\frac{5}{12}\pi$
$\left(\frac{z_1}{z_2} = \frac{2}{3}e^{-\frac{1}{12}\pi i} = \right) \frac{2}{3}e^{\frac{23}{12}\pi i}$	M1	For subtracting arguments
$(z_2 3)$	A1 4	For correct answer
(b) $\left(w^{-5} = \right) 2^{-5} \operatorname{cis} \left(-\frac{5}{8}\pi\right)$	M1	For use of de Moivre
	A1	For $-\frac{5}{8}\pi$ seen or implied
$=\frac{1}{32}\left(\cos\frac{11}{8}\pi+i\sin\frac{11}{8}\pi\right)$	A1 3	For correct answer (allow 2^{-5} and $cis \frac{11}{8}\pi$)
	7	

	1	1
3 EITHER $c-a = \pm [11, 3, -2]$	B1	For vector joining lines
$(\mathbf{c} - \mathbf{a}) \times [8, 3, -6]$	M1*	For attempt at vector product of $\mathbf{c} - \mathbf{a}$ and $[8, 3, -6]$
$\mathbf{n} = \pm [-12, 50, 9]$	A1 √	For obtaining \mathbf{n} . f.t. from incorrect $\mathbf{c} - \mathbf{a}$
$d = \frac{ \mathbf{n} }{ [8, 3, -6] }$	M1 (dep*)	For dividing $ \mathbf{n} $ by magnitude of $[8, 3, -6]$
$=\frac{\sqrt{2725}}{\sqrt{109}}$	A1	For either magnitude correct
(d=) 5	A1	For correct distance CAO
$OR \ \mathbf{c} - \mathbf{a} = \pm [11, 3, -2]$	B1	For vector joining lines
$(\mathbf{c} - \mathbf{a}) \cdot [8, 3, -6]$	M1*	For attempt at scalar product of $\mathbf{c} - \mathbf{a}$ and $[8, 3, -6]$
$\cos \theta = \pm \frac{109}{\sqrt{134}\sqrt{109}} = \pm \sqrt{\frac{109}{134}}$	A1 √	For correct $\cos\theta$ AEF . f.t. from incorrect $c-a$
$d = \sqrt{134} \sin \theta$	M1 (dep*) A1	For using trigonometry for perpendicular distance
(d=) 5	A1	For correct expression for <i>d</i> in terms of θ For correct distance CAO
$OR \mathbf{c} - \mathbf{a} = \pm [11, 3, -2]$	B1	For vector joining lines
$(\mathbf{c} - \mathbf{a}) \cdot [8, 3, -6]$	M1*	For attempt at scalar product of $c-a$ and $[8, 3, -6]$
$x = \frac{109}{\sqrt{109}} = \sqrt{109}$	A1 √	For finding projection of $\mathbf{c} - \mathbf{a}$ onto $[8, 3, -6]$
$d = \sqrt{134 - 109}$	M1 (dep*) A1	f.t. from incorrect c-a For using Pythagoras for perpendicular distance For correct expression for d
(d =) 5	A1	For correct distance CAO
OR CP = $\pm[-11+8t, -3+3t, 2-6t]$	B1	For finding a vector from C(12, 5, 3)
CP . $[8, 3, -6] = 0$	M1*	to a point on the line For using scalar product for perpendicularity
$t = \pm 1 \ OR \ P = (9, 5, -1)$	A1 √	For correct point. f.t. from incorrect CP
$d = \sqrt{3^2 + 0^2 + 4^2}$	M1 (dep*)	For finding magnitude of CP
(d =) 5	A1 A1 6	For correct expression for <i>d</i> For correct distance CAO
		SR Obtain
		$\mathbf{CP} = [11, 3, -2] - [8, 3, -6] = \pm [3, 0, 4]$ B1
		Verify $[3, 0, 4] \cdot [8, 3, -6] = 0$ M1*
		$d = \sqrt{3^2 + 0^2 + 4^2} = 5$ M1(dep*) A1 A1 (maximum 5 / 6)
	6	(maximum 37 0)
		1

4 Integrating factor $e^{\int -\frac{x^2}{1+x^3}dx}$	M1	For correct process for finding integrating factor
$= e^{-\frac{1}{3}\ln(1+x^3)} = \left(1+x^3\right)^{-\frac{1}{3}}$	A1	For correct IF, simplified (here or later)
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y \left(1 + x^3 \right)^{-\frac{1}{3}} \right) = \frac{x^2}{\left(1 + x^3 \right)^{\frac{1}{3}}}$	M1	For multiplying through by their IF
$\Rightarrow y(1+x^3)^{-\frac{1}{3}} = \frac{1}{2}(1+x^3)^{\frac{2}{3}} (+c)$	M1	For integrating RHS to obtain $A(1+x^3)^k$ OR $\ln A(1+x^3)^k$
	A1	For correct integration (+c not required here)
$\Rightarrow 1 = \frac{1}{2} + c \Rightarrow c = \frac{1}{2}$	M1 A1 √	For substituting (0, 1) into GS (including + c)
$\frac{1}{2}$	A 4	For correct c. f.t. from their GS
$\Rightarrow y = \frac{1}{2} (1 + x^3) + \frac{1}{2} (1 + x^3)^{\frac{1}{3}}$	A1	For correct solution. AEF in form $y = f(x)$
	8	
5 (i) EITHER $\mathbf{a} = [2, 3, 5], \mathbf{b} = \pm [2, 2, 0]$	B1	For stating 2 vectors in the plane
$\mathbf{n} = \mathbf{a} \times \mathbf{b} = \pm k \left[-10, 10, -2 \right]$	M1 A1 √	For finding perpendicular to plane For correct n . f.t. from incorrect b
Use (2, 1, 5) OR (0, −1, 5)	M1	For substituting a point into equation $ax + by + cz = d$ where $[a, b, c]$ = their n
$\Rightarrow 5x - 5y + z = 10$	A1	For correct cartesian equation AEF
OR $\mathbf{a} = [2, 3, 5], \mathbf{b} = \pm [2, 2, 0]$	B1	For stating 2 vectors in the plane
e.g. $\mathbf{r} = [2, 1, 5] + \lambda[2, 2, 0] + \mu[2, 3, 5]$	M1	For stating parametric equation of plane
$[x, y, z] = [2 + 2\lambda + 2\mu, 1 + 2\lambda + 3\mu, 5 + 5\mu]$	A1 √	For writing 3 equations in x, y, z f.t. from incorrect b
	M1	For eliminating λ and μ
$\Rightarrow 5x - 5y + z = 10$	A1 5	For correct cartesian equation AEF
(ii) [2t, 3t – 4, 5t – 9]	B1 1	For stating a point A on l ₁ with parameter t AEF
(iii) $\pm [2t+5, 3t-7, 5t-13]$	M1	For finding direction of l_2 from A and (-5,3, 4)
$\pm[2t+5, 3t-7, 5t-13] \cdot [2, 3, 5] = 0$	M1	For using scalar product for perpendicularity with any vector involving
$\Rightarrow t = 2$	A1	For correct value of t
$\frac{x+5}{9} = \frac{y-3}{-1} = \frac{z-4}{-3} OR$	A1 4	For a correct equation AEFcartesian
$\frac{x-4}{9} = \frac{y-2}{-1} = \frac{z-1}{-3}$		
, 1 –J		SR For $2p+3q+5r=0$ and no further
		progress award B1
	10	

	1	
6 (i) $(m^2 + 4 = 0 \Rightarrow) m = \pm 2i$	B1	For correct solutions of auxiliary equation (may be implied by correct CF)
$CF = A\cos 2x + B\sin 2x$	B1	For correct CF (AEtrig but not $Ae^{2ix} + Be^{-2ix}$ only)
$PI = p \sin x (+ q \cos x)$	B1	State a trial PI with at least $p \sin x$
$-p\sin x (-q\cos x) + 4p\sin x (+4q\cos x) = \sin x$	M1	For substituting PI into DE
$\Rightarrow p = \frac{1}{3}, q = 0$	A1	For correct <i>p</i> and <i>q</i> (which may be implied)
$\Rightarrow y = A\cos 2x + B\sin 2x + \frac{1}{3}\sin x$	B1 √ 6	For using GS = CF + PI, with 2 arbitrary constants in CF and none in PI
(ii) $(0,0) \Rightarrow A = 0$	B1 √	For correct equation in A and/or B f.t. from their GS
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2B\cos 2x + \frac{1}{3}\cos x \Rightarrow \frac{4}{3} = 2B + \frac{1}{3}$	M1	For differentiating their GS and
dx 3 3 3		substituting values for x and $\frac{dy}{dx}$
$A = 0, \ B = \frac{1}{2}$	A1	For correct A and B
		Allow $A = -\frac{1}{4}i$, $B = \frac{1}{4}i$ from
		$CF A e^{2i x} + B e^{-2i x}$
$\Rightarrow y = \frac{1}{2}\sin 2x + \frac{1}{3}\sin x$	A1 4	For stating correct solution CAO
	10	
7 (i) $C + iS = 1 + e^{i\theta} + e^{2i\theta} + e^{3i\theta} + e^{4i\theta} + e^{5i\theta}$	M1	For using de Moivre, showing at least 3 terms
$e^{6i\theta}$ –1	M1	For recognising GP
$=\frac{e^{6i\theta}-1}{e^{i\theta}-1}$	A1	For correct GP sum
$= \frac{e^{3i\theta} - e^{-3i\theta}}{e^{\frac{1}{2}i\theta} - e^{-\frac{1}{2}i\theta}} \cdot \frac{e^{3i\theta}}{e^{\frac{1}{2}i\theta}} = \frac{e^{3i\theta} - e^{-3i\theta}}{e^{\frac{1}{2}i\theta} - e^{-\frac{1}{2}i\theta}} e^{\frac{5}{2}i\theta}$	A1 4	For obtaining correct expression AG
(ii) $C + i S = \frac{2i \sin 3\theta}{2i \sin \frac{1}{2}\theta} \cdot e^{\frac{5}{2}i\theta}$	M1	For expressing numerator and denominator in terms of sines
$2i\sin\frac{1}{2}\theta$	A1	For $k \sin 3\theta$ and $k \sin \frac{1}{2}\theta$
$Re \Rightarrow C = \sin 3\theta \cos \frac{5}{2}\theta \csc \frac{1}{2}\theta$	A1	For correct expression AG
$Im \Rightarrow S = \sin 3\theta \sin \frac{5}{2}\theta \csc \frac{1}{2}\theta$	B1 4	For correct expression
(iii) $C = S \implies \sin 3\theta = 0$, $\tan \frac{5}{2}\theta = 1$	M1	For either equation deduced AEF
0 1 - 2 -		Ignore values outside $0 < \theta < \pi$
$\theta = \frac{1}{3}\pi, \frac{2}{3}\pi$	A1	For both values correct and no extras
$\theta = \frac{1}{10}\pi, \frac{1}{2}\pi, \frac{9}{10}\pi$	A2 4	For all values correct and no extras. Allow A1 for any 1 value <i>OR</i> all correct
		with extras
	12	

B1 1	For stating the non-commutative product in the given table, or justifying another correct one
B1 B1 2	For either order stated For both orders stated, and no more (Ignore 1)
B1	For correct subgroup
B1 2	For correct subgroup
B1	For correct order
M1	For attempt to find $(ar)^m = e \ OR$
	$(ar^2)^m = e$
A1	For correct order
A1 4	For correct order
	If the border elements $ar ar^2 ar^3 ar^4$ are not written, it will be assumed that the products arise from that order
B1 B1 B1 B1 B1_5	For all 16 elements of the form e or r^m For all 4 elements in leading diagonal = e For no repeated elements in any completed row or column For any two rows or columns correct For all elements correct
	B1 2 B1 B1 A1 A1 A1 A1 B1 B1 B1

1 (i) Attempt to show no closure	M1		For showing operation table or otherwise
$3 \times 3 = 1$, $5 \times 5 = 1$ <i>OR</i> $7 \times 7 = 1$	A1		For a convincing reason
OR Attempt to show no identity	M1		For attempt to find identity <i>OR</i> for showing operation table
Show $a \times e = a$ has no solution	A1	2	For showing identity is not 3, not 5, and not 7 by reference to operation table or otherwise
(ii) (<i>a</i> =) 1	B1	1	For value of a stated
(iii) EITHER:			
$\{e, r, r^2, r^3\}$ is cyclic, (ii) group is not cyclic	B1*		For a pair of correct statements
OR : { e, r, r^2, r^3 } has 2 self-inverse elements, (ii) group has 4 self-inverse elements	B1*		For a pair of correct statements
$OR: \{e, r, r^2, r^3\}$ has 1 element of order 2 (ii) group has 3 elements of order 2	B1*		For a pair of correct statements
$OR: \{e, r, r^2, r^3\}$ has element(s) of order 4	B1*		For a pair of correct statements
(ii) group has no element of order 4			
Not isomorphic	B1 (dep ²	k)	For correct conclusion
	\ T	2	
	5		
2 <i>EITHER</i> : [3, 1, -2] × [1, 5, 4]	M1		For attempt to find vector product of both normals
\Rightarrow b = $k[1, -1, 1]$	A1		For correct vector identified with b
e.g. put $x OR y OR z = 0$	M1		For giving a value to one variable
and solve 2 equations in 2 unknowns	M1		For solving the equations in the other variables
Obtain [0, 2, -1] <i>OR</i> [2, 0, 1] <i>OR</i> [1, 1, 0]	A1		For a correct vector identified with a
OR: Solve $3x + y - 2z = 4$, $x + 5y + 4z = 6$			
e.g. $y+z=1$ $OR x-z=1$ $OR x+y=2$	M1		For eliminating one variable between 2 equations
Put $x OR y OR z = t$	M1		For solving in terms of a parameter
[x, y, z] = [t, 2-t, -1+t] OR [2-t, t, 1-t] $OR [1+t, 1-t, t]$	M1		For obtaining a parametric solution for x , y , z
Obtain [0, 2, -1] <i>OR</i> [2, 0, 1] <i>OR</i> [1, 1, 0]	A1		For a correct vector identified with a
Obtain $k[1, -1, 1]$	A1	5	For correct vector identified with b
	5		
3 (i) $z = \frac{6 \pm \sqrt{36 - 144}}{2}$	M1		For using quadratic equation formula
<u>L</u>			or completing the square
$z = 3 \pm 3\sqrt{3} i$	A1		For obtaining cartesian values AEF
Obtain $(r =) 6$	A1		For correct modulus
Obtain $(\theta =) \frac{1}{3}\pi$	A1	4	For correct argument
(ii) EITHER: 6^{-3} OR $\frac{1}{216}$ seen	В1√		f.t. from their r^{-3}
$Z^{-3} = 6^{-3}(\cos(-\pi) \pm i\sin(-\pi))$	M1		For using de Moivre with $n = \pm 3$
Obtain $-\frac{1}{216}$	A1		For correct value
$OR: z^3 = 6z^2 - 36z = 6(6z - 36) - 36z$	M1		For using equation to find z^3
216 seen	B1		Ignore any remaining z terms
Obtain $-\frac{1}{216}$	A1	3	For correct value
	7		

4 (i) $(y = xz \Rightarrow) \frac{dy}{dx} = x\frac{dz}{dx} + z$	B1	For a correct statement
$x\frac{dz}{dx} + z = \frac{x^2(1-z^2)}{x^2z} = \frac{1}{z} - z$	M1	For substituting into differential equation and attempting to simplify to a variables separable form
$x\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{z} - 2z = \frac{1 - 2z^2}{z}$	A1 3	For correct equation AG
(ii) $\int \frac{z}{1 - 2z^2} dz = \int \frac{1}{x} dx \Rightarrow -\frac{1}{4} \ln(1 - 2z^2) = \ln cx$	M1 M1* A1	For separating variables and writing integrals For integrating both sides to ln forms For correct result (<i>c</i> not required here)
$1 - 2z^2 = (cx)^{-4}$	A1√	For exponentiating their ln equation including a constant (this may follow the next M1)
$\frac{x^2 - 2y^2}{x^2} = \frac{c^{-4}}{x^4}$	M1 (dep*)	For substituting $z = \frac{y}{x}$
$x^2(x^2 - 2y^2) = k$	A1 6	For correct solution properly obtained, including dealing with any necessary change of constant to k as given AG
5 (i) (a) e, p, p^2	B1	For correct elements
(b) e, q, q^2	B1 2	For correct elements
		SR If the answers to parts (i) and (iv) are reversed, full credit may be earned for both parts
(ii) $p^3 = q^3 = e \Rightarrow (pq)^3 = p^3q^3 = e$	M1	For finding $(pq)^3$ or $(pq^2)^3$
⇒ order 3	A1	For correct order
$(pq^2)^3 = p^3q^6 = p^3(q^3)^2 = e \Rightarrow \text{order } 3$	A1 3	For correct order
		SR For answer(s) only allow B1 for either or both
(iii) 3	B1 1	For correct order and no others
(iv)	B1	For stating e and either pq or p^2q^2
$e, pq, p^2q^2 OR e, pq, (pq)^2$	B1	For all 3 elements and no more
	B1	For stating e and either pq^2 or p^2q
$e, pq^2, p^2q \ OR \ e, pq^2, (pq^2)^2$	B1 4	For all 3 elements and no more
$OR e, p^2q, (p^2q)^2$		
	10	

6 (i) (CF $m = -3 \Rightarrow$) Ae^{-3x}	B1 1	For correct CF
(ii) (y =) px + q	B1	For stating linear form for PI (may be implied)
$\Rightarrow p + 3(px + q) = 2x + 1$	M1	For substituting PI into DE (needs y and $\frac{dy}{dx}$)
$\Rightarrow p = \frac{2}{3}, q = \frac{1}{9}$	A1 A1	For correct values
$\Rightarrow GS y = Ae^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√	For correct GS. f.t. from their CF + PI
		SR Integrating factor method may be used, but CF must be stated somewhere to earn the mark in (i)
I.F. $e^{3x} \Rightarrow \frac{d}{dx} \left(y e^{3x} \right) = (2x+1)e^{3x}$	B1	For stating integrating factor
$\Rightarrow y e^{3x} = \frac{1}{3}e^{3x}(2x+1) - \int \frac{2}{3}e^{3x} dx$	M1	For attempt at integrating by parts the right way round
$\Rightarrow y e^{3x} = \frac{2}{3}x e^{3x} + \frac{1}{3}e^{3x} - \frac{2}{9}e^{3x} + A$	A2 *	For correct integration, including constant Award A1 for any 2 algebraic terms correct
$\Rightarrow GS y = Ae^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√ 5	For correct GS. f.t. from their * with constant
(iii) EITHER $\frac{dy}{dx} = -3Ae^{-3x} + \frac{2}{3}$	M1	For differentiating their GS
$\Rightarrow -3A + \frac{2}{3} = 0$	M1	For putting $\frac{dy}{dx} = 0$ when $x = 0$
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1	For correct solution
$OR \frac{\mathrm{d}y}{\mathrm{d}x} = 0, \ x = 0 \implies 3y = 1$	M1	For using original DE with $\frac{dy}{dx} = 0$ and $x = 0$ to find y
$\Rightarrow \frac{1}{3} = A + \frac{1}{9}$	M1	For using their GS with y and $x = 0$ to find A
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1 3	For correct solution
(iv) $y = \frac{2}{3}x + \frac{1}{9}$	B1√ 1	For correct function. f.t. from linear part of (iii)
	10	

7 (i) EITHER: (AG is $\mathbf{r} = $) [6, 4, 8] + tk [1, 0, 1] or [3, 4, 5] + tk [1, 0, 1]	B1	For a correct equation
Normal to <i>BCD</i> is	M1	For finding vector product of any two of $\pm[1, -4, -1], \pm[2, 1, 1], \pm[1, 5, 2]$
$\mathbf{n} = k[1, 1, -3]$	A1	For correct n
Equation of <i>BCD</i> is r .[1, 1, -3] = -6	A1	For correct equation (or in cartesian form)
Intersect at $(6+t)+4+(-3)(8+t)=-6$	M1	For substituting point on AG into plane
$t = -4 \ (t = -1 \text{ using } [3, 4, 5]) \Rightarrow \mathbf{OM} = [2, 4, 4]$	A1	For correct position vector of M AG
OR: (AG is $\mathbf{r} = $) [6, 4, 8] + tk [1, 0, 1]	B1	For a correct equation
or $[3, 4, 5] + t k[1, 0, 1]$		
$\mathbf{r} = \mathbf{u} + \lambda \mathbf{v} + \mu \mathbf{w}$, where $\mathbf{u} = [2, 1, 3] \ or \ [1, 5, 4] \ or \ [3, 6, 5]$	M1	
$\mathbf{v}, \mathbf{w} = \text{two of } [1, -4, -1], [1, 5, 2], [2, 1, 1]$	A1	For a correct parametric equation of <i>BCD</i>
$(x =) 6+t = 2+ \lambda + \mu$		For forming 3 equations in t , λ , μ from line and plane,
e.g. $(y =)$ 4 = 1-4 λ +5 μ (z =) 8+t = 3- λ +2 μ	M1	and attempting to solve them
$t = -4 \text{ or } \lambda = -\frac{1}{3}, \mu = \frac{1}{3}$	A1	For correct value of t or λ , μ
\Rightarrow OM = [2, 4, 4]	A1 6	For correct position vector of M AG
(ii) A, G, M have t = 0, -3, -4 OR $AG = 3\sqrt{2}, AM = 4\sqrt{2} OR$ $AG = [-3, 0, -3], AM = [-4, 0, -4]$ $\Rightarrow AG : AM = 3 : 4$	B1 1	For correct ratio AEF
(iii) $\mathbf{OP} = \mathbf{OC} + \frac{4}{3}\mathbf{CG}$	M1	For using given ratio to find position vector of P
$= \left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right]$	A1 2	For correct vector
(iv) EITHER: Normal to ABD is	M1	For finding vector product of any two of $\pm [4, 3, 5], \pm [1, 5, 2], \pm [3, -2, 3]$
$\mathbf{n} = k[19, 3, -17]$	A1	For correct n
Equation of <i>ABD</i> is r .[19, 3, -17] = -10	M1	For finding equation (or in cartesian form)
$19.\frac{11}{3} + 3.\frac{11}{3} - 17.\frac{16}{3} = -10$	A1	For verifying that P satisfies equation
<i>OR</i> : Equation of <i>ABD</i> is $\mathbf{r} = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$ (etc.)	M1	For finding equation in parametric form
$\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right] = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$	M1	For substituting P and solving 2 equations for λ , μ
$\lambda = -\frac{2}{3}$, $\mu = \frac{1}{3}$	A1	For correct λ, μ
	A1	For verifying 3rd equation is satisfied
OR: $\mathbf{AP} = \left[-\frac{7}{3}, -\frac{1}{3}, -\frac{8}{3} \right]$	M1	For finding 3 relevant vectors in plane ABDP
	A1	For correct AP or BP or DP
$\mathbf{AB} = [-4, -3, -5], \ \mathbf{AD} = [-3, 2, -3]$ ⇒ $\mathbf{AB} + \mathbf{AD} = [-7, -1, -8]$	M1	For finding AB , AD or BA , BD or DB , DA
$\Rightarrow \mathbf{AP} = \frac{1}{3}(\mathbf{AB} + \mathbf{AD})$	A1 4	For verifying linear relationship
	13	

8 (i) $\cos 4\theta + i \sin 4\theta =$ $c^4 + 4i c^3 s - 6c^2 s^2 - 4i cs^3 + s^4$ $\Rightarrow \sin 4\theta = 4c^3 s - 4cs^3$	M1		For using de Moivre with $n = 4$
and $\cos 4\theta = c^4 - 6c^2s^2 + s^4$	A1		For both expressions
$\Rightarrow \tan 4\theta = \frac{4 \tan \theta - 4 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta}$	M1		For expressing $\frac{\sin 4\theta}{\cos 4\theta}$ in terms of c and s
	A1	4	For simplifying to correct expression
(ii) $\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4\cot^3 \theta - 4\cot \theta}$			For inverting (i)
$\frac{1}{4\cot^3\theta - 4\cot\theta}$	B1	1	and using $\cot \theta = \frac{1}{\tan \theta} \text{ or } \tan \theta = \frac{1}{\cot \theta}$. AG
(iii) $\cot 4\theta = 0$	B1		For putting $\cot 4\theta = 0$
			(can be awarded in (iv) if not earned here)
Put $x = \cot^2 \theta$	B1		For putting $x = \cot^2 \theta$ in the numerator of (ii)
$\theta = \frac{1}{8}\pi \Rightarrow x^2 - 6x + 1 = 0$			For deducing quadratic from (ii) and $\theta = \frac{1}{8}\pi$
o o	B1	3	OR 8
$OR x^2 - 6x + 1 = 0 \Rightarrow \theta = \frac{1}{8}\pi$			For deducing $\theta = \frac{1}{8}\pi$ from (ii) and quadratic
(iv) $4\theta = \frac{3}{2}\pi OR \frac{1}{2} (2n+1)\pi$	M1		For attempting to find another value of θ
2nd root is $x = \cot^2\left(\frac{3}{8}\pi\right)$	A1		For the other root of the quadratic
$\Rightarrow \cot^2\left(\frac{1}{8}\pi\right) + \cot^2\left(\frac{3}{8}\pi\right) = 6$	M1		For using sum of roots of quadratic
$\Rightarrow \csc^2\left(\frac{1}{8}\pi\right) + \csc^2\left(\frac{3}{8}\pi\right) = 8$	M1 A1	-	For using $\cot^2 \theta + 1 = \csc^2 \theta$ For correct value
	13		

1 (i) $zz^* = re^{i\theta}.re^{-i\theta} = r^2 = z ^2$	B1 1	For verifying result AG
(ii) Circle	B1	For stating circle
Centre $0 (+0i) OR (0, 0) OR O$, radius 3	B1 2	For stating correct centre and radius
	3	
2 <i>EITHER</i> : $(\mathbf{r} =) [3+t, 1+4t, -2+2t]$	M1	For parametric form of <i>l</i> seen or implied
8(3+t) - 7(1+4t) + 10(-2+2t) = 7	M1 A1	For substituting into plane equation
\Rightarrow (0t) + (-3) = 7 \Rightarrow contradiction	A1	For obtaining a contradiction
l is parallel to Π , no intersection	B1 5	For conclusion from correct working
$OR: [1, 4, 2] \cdot [8, -7, 10] = 0$	M1	For finding scalar product of direction vectors
$\Rightarrow l$ is parallel to Π	A1	For correct conclusion
$(3, 1, -2)$ into Π	M1	For substituting point into plane equation
$\Rightarrow 24 - 7 - 20 \neq 7$	A1	For obtaining a contradiction
l is parallel to Π , no intersection	B1	For conclusion from correct working
OR:Solve $\frac{x-3}{1} = \frac{y-1}{4} = \frac{z+2}{2}$ and $8x-7y+10z=7$		
eg $y-2z=3$, $2y-2=4z+8$	M1 A1	For eliminating one variable
	M1	For eliminating another variable
eg $4z + 4 = 4z + 8$	A1	For obtaining a contradiction
l is parallel to Π , no intersection	B1	For conclusion from correct working
	5	
3 Aux. equation $m^2 - 6m + 8 = 0$	M1	For auxiliary equation seen
m = 2, 4	A1	For correct roots
$CF (y =) Ae^{2x} + Be^{4x}$	A1√	For correct CF. f.t. from their <i>m</i>
$PI (y =) Ce^{3x}$	M1	For stating and substituting PI of correct form
$9C - 18C + 8C = 1 \Rightarrow C = -1$	A1	For correct value of C
GS $y = Ae^{2x} + Be^{4x} - e^{3x}$	B1√ 6	For GS. f.t. from their CF + PI with 2 arbitrary constants in CF and none in PI
	6	

4 (i) $q(st) = qp = s$	B1		For obtaining s
(qs)t = tt = s	B1	2	For obtaining s
(ii) METHOD 1			
Closed: see table	B1		For stating closure with reason
Identity = r	B1		For stating identity <i>r</i>
Inverses: $p^{-1} = s$, $q^{-1} = t$, $(r^{-1} = r)$,	M1		For checking for inverses
$s^{-1} = p, \ t^{-1} = q$	A1	4	For stating inverses <i>OR</i> For giving sufficient explanation to justify each element has an inverse eg <i>r</i> occurs once in each row and/or column
METHOD 2			-8
Identity = r	B1		For stating identity <i>r</i>
	M1		For attempting to establish a generator $\neq r$
eg $p^2 = t$, $p^3 = q$, $p^4 = s$	A1		For showing powers of $p(OR q, s \text{ or } t)$ are different elements of the set
$\Rightarrow p^5 = r$, so p is a generator	A1		For concluding $p^5(ORq^5, s^5 \text{ or } t^5) = r$
(iii) e, d, d^2, d^3, d^4	B2	2	For stating all elements AEF eg d^{-1} , d^{-2} , dd
	8	3	

5 (i) $(\cos 6\theta =) \text{Re}(c + is)^6$	M1		For expanding (real part of) $(c+is)^6$ at least 4 terms and 1 evaluated binomial coefficient needed
$(\cos 6\theta =) c^6 - 15c^4s^2 + 15c^2s^4 - s^6$	A1		For correct expansion
$(\cos 6\theta =)$ $c^{6} - 15c^{4} (1 - c^{2}) + 15c^{2} (1 - c^{2})^{2} - (1 - c^{2})^{3}$	M1		For using $s^2 = 1 - c^2$
$(\cos 6\theta =) 32c^6 - 48c^4 + 18c^2 - 1$	A1	4	For correct result AG
(ii) $64x^6 - 96x^4 + 36x^2 - 3 = 0 \Rightarrow \cos 6\theta = \frac{1}{2}$	M1		For obtaining a numerical value of $\cos 6\theta$
$\Rightarrow (\theta =) \frac{1}{18}\pi, \frac{5}{18}\pi, \frac{7}{18}\pi \text{ etc.}$	A1		For any correct solution of $\cos 6\theta = \frac{1}{2}$
$\cos 6\theta = \frac{1}{2}$ has multiple roots	M1		For stating or implying at least 2 values of $\boldsymbol{\theta}$
largest x requires smallest θ	A1	4	For identifying $\cos \frac{1}{18} \pi$ AEF as the largest positive root
\Rightarrow largest positive root is $\cos \frac{1}{18}\pi$			from a list of 3 positive roots OR from general solution OR from consideration of the cosine function
	8		

Ţ	1	,
$6 \mathbf{(i)} \mathbf{n} = l_1 \times l_2$	B1	For stating or implying in (i) or (ii) that n is perpendicular to l_1 and l_2
$\mathbf{n} = [2, -1, 1] \times [4, 3, 2]$	M1*	For finding vector product of direction vectors
$\mathbf{n} = k[-1, 0, 2]$	A1	For correct vector (any k)
$[3, 4, -1] \cdot k[-1, 0, 2] = -5k$	M1 (*dep)	For substituting a point of l_1 into $\mathbf{r.n}$
$\mathbf{r} \cdot [-1, 0, 2] = -5$	A1 5	For obtaining correct p. AEF in this form
(ii) $[5, 1, 1] \cdot k[-1, 0, 2] = -3k$	M1	For using same n and substituting a point of l_2
$\mathbf{r} \cdot [-1, 0, 2] = -3$	A1√ 2	For obtaining correct <i>p</i> . AEF in this form f.t. on incorrect n
(iii) $d = \frac{ -5+3 }{\sqrt{5}} OR d = \frac{ [2,-3,2]\cdot[-1,0,2] }{\sqrt{5}}$	M1	For using a distance formula from their equations Allow omission of
OR d from (5, 1, 1) to $\Pi_1 = \frac{ 5(-1) + 1(0) + 1(2) + 5 }{\sqrt{5}}$		
OR d from $(3, 4, -1)$ to $\Pi_2 = \frac{ 3(-1) + 4(0) - 1(2) + 3 }{\sqrt{5}}$		
$OR[3-t, 4, -1+2t] \cdot [-1, 0, 2] = -3 \implies t = \frac{2}{5}$		<i>OR</i> For finding intersection of \mathbf{n}_1 and Π_2 or \mathbf{n}_2 and
$OR [5-t, 1, 1+2t] \cdot [-1, 0, 2] = -5 \Rightarrow t = -\frac{2}{5}$		Π_1
$d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427$	A1√ 2	For correct distance AEF f.t. on incorrect n
(iv) d is the shortest OR perpendicular distance between l_1 and l_2	B1 1	For correct statement
	10	
$(e^{i\phi} + e^{-i\phi})$		
7 (i) $(z - e^{i\phi})(z - e^{-i\phi}) \equiv z^2 - (2)z \frac{(e^{i\phi} + e^{-i\phi})}{(2)} + 1$	B1 1	For correct justification AG
$\equiv z^2 - (2\cos\phi)z + 1$	D1	
$(\mathbf{ii}) \ z = \mathrm{e}^{\frac{2}{7}k\pi\mathrm{i}}$	B1	For general form <i>OR</i> any one non-real root
for $k = 0, 1, 2, 3, 4, 5, 6 \ OR \ 0, \pm 1, \pm 2, \pm 3$	B1	For other roots specified (k =0 may be seen in any form, eg 1, e ⁰ , e ^{2πi})
†im		For answers in form $\cos \theta + i \sin \theta$ allow maximum
		B1 B0
<u> </u>		B1 B0
1re		
	B1	For any 7 points equally spaced round unit circle (circumference need not be shown)
	B1 4	For 1 point on + ^{ve} real axis,
$\frac{2\pi i}{\pi i}$, $\frac{4\pi i}{\pi i}$,		and other points in correct quadrants
(iii) $(z^7 - 1 =) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-2}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-6}{7}\pi i})$	M1	For using linear factors from (ii), seen or implied
$= (z - e^{\frac{2}{7}\pi i})(z - e^{\frac{-2}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-6}{7}\pi i}) \times$	M1	For identifying at least one pair of complex conjugate factors
$\times (z-1)$	B1	For linear factor seen
$=(z^2-(2\cos\frac{2}{7}\pi)z+1)\times$	A1	For any one quadratic factor seen
$(z^{2} - (2\cos\frac{4}{7}\pi)z + 1) \times (z^{2} - (2\cos\frac{6}{7}\pi)z + 1) \times$	A1 5	For the other 2 quadratic factors and expression written as product of 4 factors
$\times (z-1)$	10	
	10	

	1	
8 (i) Integrating factor $e^{\int \tan x (dx)}$	B1	For correct IF
$= e^{-\ln \cos x}$	M1	For integrating to ln form
$= (\cos x)^{-1} OR \sec x$	A1	For correct simplified IF AEF
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y(\cos x)^{-1} \right) = \cos^2 x$	B1√	For $\frac{d}{dx}(y)$. their IF = $\cos^3 x$. their IF
$y(\cos x)^{-1} = \int 1(1+\cos 2x) (dx)$	M1	For integrating LHS
$y(\cos x)^{-1} = \int \frac{1}{2} (1 + \cos 2x) (dx)$	M1	For attempting to use $\cos 2x$ formula OR parts
		for $\int \cos^2 x dx$
$y(\cos x)^{-1} = \frac{1}{2}x + \frac{1}{4}\sin 2x \ (+c)$	A1	For correct integration both sides AEF
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x + c\right)\cos x$	A1 8	For correct general solution AEF
(ii) $2 = (\frac{1}{2}\pi + c) \cdot -1 \Rightarrow c = -2 - \frac{1}{2}\pi$	M1	For substituting $(\pi, 2)$ into their GS
, , , , , , , , , , , , , , , , , , , ,		and solve for c
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x - 2 - \frac{1}{2}\pi\right)\cos x$	A1 2	For correct solution AEF
	10	
9 (i) $3^n \times 3^m = 3^{n+m}, n+m \in \mathbb{Z}$	B1	For showing closure
$\left(3^{p} \times 3^{q}\right) \times 3^{r} = \left(3^{p+q}\right) \times 3^{r} = 3^{p+q+r}$	M1	For considering 3 distinct elements, seen bracketed 2+1 or 1+2
$=3^p \times (3^{q+r}) = 3^p \times (3^q \times 3^r) \Rightarrow$ associativity	A1	For correct justification of associativity
Identity is 3 ⁰	B1	For stating identity. Allow 1
Inverse is 3^{-n}	B1	For stating inverse
$3^n \times 3^m = 3^{n+m} = 3^{m+n} = 3^m \times 3^n \Rightarrow \text{commutativity}$	B1 6	For showing commutativity
(ii) (a) $3^{2n} \times 3^{2m} = 3^{2n+2m} \left(= 3^{2(n+m)} \right)$	B1*	For showing closure
Identity, inverse OK	B1 (*dep) 2	For stating other two properties satisfied and hence a subgroup
(b) For 3^{-n} ,	M1	For considering inverse
-n ∉ subset	A1 2	For justification of not being a subgroup
		3^{-n} must be seen here or in (i)
(c) EITHER: eg $3^{1^2} \times 3^{2^2} = 3^5$	M1	For attempting to find a specific counter-example of closure
$\neq 3^{r^2} \Rightarrow \text{ not a subgroup}$	A1 2	For a correct counter-example and statement that it is not a subgroup
$OR: 3^{n^2} \times 3^{m^2} = 3^{n^2 + m^2}$	M1	For considering closure in general
$\neq 3^{r^2} \text{ eg } 1^2 + 2^2 = 5 \implies \text{not a subgroup}$	A1	For explaining why $n^2 + m^2 \neq r^2$ in general and
n to the total designoup	12	statement that it is not a subgroup

1 (a) (i) e.g. $ap \neq pa \Rightarrow$ not commutative	B1 1	For correct reason and conclusion
(ii) 3	B1 1	For correct number
(iii) <i>e, a, b</i>	B1 1	For correct elements
(b) c^3 has order 2	B1	For correct order
c^4 has order 3	B1	For correct order
c^5 has order 6	B1 3	For correct order
, mas order o	6	
$2 m^2 - 8m + 16 = 0$	M1	For stating and attempting to solve auxiliary eqn
$\Rightarrow m = 4$	A1	For correct solution
\Rightarrow CF $(y =) (A + Bx)e^{4x}$	A1√	For CF of correct form. f.t. from m
For PI try $y = px + q$	M1	For using linear expression for PI
$\Rightarrow -8p + 16(px + q) = 4x$		
$\Rightarrow p = \frac{1}{4} q = \frac{1}{8}$	A1 A1	For correct coefficients
$\Rightarrow GS \ y = (A + Bx)e^{4x} + \frac{1}{4}x + \frac{1}{8}$	B1√ 7	For GS = CF + PI. Requires $y = 1$. f.t. from CF and PI with
4 8		2 arbitrary constants in CF and none in PI
	7	
3 (i) line segment <i>OA</i>	B1 B1 2	For stating line through <i>O OR A</i> For correct description AEF
\rightarrow \rightarrow		•
(ii) $(\mathbf{r} - \mathbf{a}) \times (\mathbf{r} - \mathbf{b}) = \overrightarrow{AP} \times \overrightarrow{BP}$	B1	For identifying $\mathbf{r} - \mathbf{a}$ with \overrightarrow{AP} and $\mathbf{r} - \mathbf{b}$ with \overrightarrow{BP} Allow direction errors
$= AP BP \sin \pi \cdot \hat{\mathbf{n}} = 0$	B1 2	For using \times of 2 parallel vectors = 0
		$OR \sin \pi = 0$ or $\sin 0 = 0$ in an appropriate vector expression
(iii) line through O	B1	For stating line
parallel to AB	B1 B1 3	For stating through <i>O</i> For stating correct direction
paramer to AB	ыз	-
	7	\overrightarrow{SR} For \overrightarrow{AB} or \overrightarrow{BA} allow B1 B0 B1
4 $(C+iS=)$ $\int_0^{\frac{1}{2}\pi} e^{2x} (\cos 3x + i \sin 3x) (dx)$		
$\cos 3x + i \sin 3x = e^{3ix}$	B1	For using de Moivre, seen or implied
$\int_0^{\frac{1}{2}\pi} e^{(2+3i)x} (dx) = \frac{1}{2+3i} \left[e^{(2+3i)x} \right]_0^{\frac{1}{2}\pi}$	M1* A1	For writing as a single integral in exp form For correct integration (ignore limits)
$= \frac{2-3i}{4+9} \left(e^{(2+3i)\frac{1}{2}\pi} - e^0 \right) = \frac{2-3i}{13} \left(-ie^{\pi} - 1 \right)$	A1	For substituting limits correctly (unsimplified)
417 () 13 ()	M1 (dep*)	(may be earned at any stage) For multiplying by complex conjugate of 2+3i
$= \left\{ \frac{1}{13} \left(-2 - 3e^{\pi} + i (3 - 2e^{\pi}) \right) \right\}$	M1 (dep*)	For equating real and/or imaginary parts
$C = -\frac{1}{13} \left(2 + 3e^{\pi} \right)$	A1	For correct expression AG
$S = \frac{1}{13} \left(3 - 2e^{\pi} \right)$	A1	For correct expression
	8	

	1	1
5 (i) IF $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ $OR x \frac{dy}{dx} + y = x \sin 2x$	M1	For correct process for finding integrating factor OR for multiplying equation through by x
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\sin 2x$	A1	For writing DE in this form (may be implied)
$\Rightarrow xy = \int x \sin 2x (\mathrm{d}x)$	M1	For integration by parts the correct way round
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{2}\int \cos 2x(dx)$	A1	For 1st term correct
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x \ (+c)$	M1	For their 1st term and attempt at integration of $\frac{\cos kx}{\sin kx}$
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{c}{x}$	A1 6	For correct expression for <i>y</i>
(ii) $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right) \Rightarrow \frac{2}{\pi} = \frac{1}{\pi} + \frac{4c}{\pi} \Rightarrow c = \frac{1}{4}$	M1	For substituting $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right)$ in solution
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{1}{4x}$	A1 2	For correct solution. Requires $y = 1$.
(iii) $(y \approx) -\frac{1}{2}\cos 2x$	B1√ 1	For correct function AEF f.t. from (ii)
-	9	
6 (i)		Either coordinates or vectors may be used Methods 1 and 2 may be combined, for a maximum of 5 marks
METHOD 1		
State $B = (-1, -7, 2) + t(1, 2, -2)$	M1	For using vector normal to plane
On plane \Rightarrow $(-1+t)+2(-7+2t)-2(2-2t)=-1$	M1 M1	For substituting parametric form into plane For solving a linear equation in <i>t</i>
$\Rightarrow t = 2 \Rightarrow B = (1, -3, -2)$	A1	For correct coordinates
$AB = \sqrt{2^2 + 4^2 + 4^2} OR 2\sqrt{1^2 + 2^2 + 2^2} = 6$	A1 5	For correct length of AB
METHOD 2		
$AB = \left \frac{-1 - 14 - 4 + 1}{\sqrt{1^2 + 2^2 + 2^2}} \right = 6$	M1	For using a correct distance formula
OR $AB = AC \cdot AB = \frac{[6, 7, 1] \cdot [1, 2, -2]}{\sqrt{1^2 + 2^2 + 2^2}} = 6$	A1	For correct length of AB
$B = (-1, -7, 2) \pm 6 \frac{(1, 2, -2)}{\sqrt{1^2 + 2^2 + 2^2}}$	M1	For using $B = A + \text{length of } AB \times \text{unit normal}$
$B = (-1, -7, 2) \pm (2, 4, -4)$	B1	For checking whether + or – is needed
B = (1, -3, -2)	A1	(substitute into plane equation) For correct coordinates (allow even if B0)
(ii) Find vector product of any two of $\pm [6, 7, 1], \pm [6, -3, 0], \pm (0, 10, 1)$	M1	For finding vector product of two relevant vectors
Obtain $k[1, 2, -20]$	A1	For correct vector n
$\theta = \cos^{-1} \frac{\left [1, 2, -2] \cdot [1, 2, -20] \right }{\sqrt{1^2 + 2^2 + 2^2} \sqrt{1^2 + 2^2 + 20^2}}$	M1* M1 (dep*)	For using scalar product of two normal vectors For stating both moduli in denominator
$\theta = \cos^{-1} \frac{45}{\sqrt{9}\sqrt{405}} = 41.8^{\circ} (41.810^{\circ}, 0.72972)$	A1 \(\) A1 \(\) A1 \(\)	For correct scalar product. f.t. from n For correct angle

7 (i) (a) $\sin \frac{6}{8}\pi = \frac{1}{\sqrt{2}}$, $\sin \frac{2}{8}\pi = \frac{1}{\sqrt{2}}$	B1	1	For verifying $\theta = \frac{1}{8}\pi$
(b)	M1		For sketching $y = \sin 6\theta$ and $y = \sin 2\theta$ for 0 ,, θ ,, $\frac{1}{2}\pi$ OR any other correct method for solving $\sin 6\theta = \sin 2\theta$ for $\theta \neq k\frac{\pi}{2}$ OR appropriate use of symmetry
$\theta = \frac{3}{8}\pi$	A1	2	OR attempt to verify a reasonable guess for θ For correct θ
(ii) Im $(c+is)^6 = 6c^5s - 20c^3s^3 + 6cs^5$	M1 A1		For expanding $(c+is)^6$; at least 3 terms and 3 binomial coefficients needed For 3 correct terms
$\sin 6\theta = \sin \theta \left(6c^5 - 20c^3(1 - c^2) + 6c(1 - c^2)^2 \right)$	M1		For using $s^2 = 1 - c^2$
$\sin 6\theta = \sin \theta \left(32c^5 - 32c^3 + 6c \right)$	A1		For any correct intermediate stage
$\sin 6\theta = 2\sin\theta\cos\theta \left(16c^4 - 16c^2 + 3\right)$	A1		For obtaining this expression correctly
$\sin 6\theta = \sin 2\theta \left(16\cos^4\theta - 16\cos^2\theta + 3\right)$		5	AG
(iii) $16c^4 - 16c^2 + 3 = 1$	M1		For stating this equation AEF
$\Rightarrow c^2 = \frac{2 \pm \sqrt{2}}{4}$	A1		For obtaining both values of c^2
$-$ sign requires larger $\theta = \frac{3}{8}\pi$	A1	3	For stating and justifying $\theta = \frac{3}{8}\pi$
	1	1	Calculator OK if figures seen

	ı	
8 (i) Group <i>A</i> : $e = 6$ Group <i>B</i> : $e = 1$]	
-	B1	For any two correct identities
Group C : $e = 2^0 OR 1$	B1	For two other correct identities
Group D : $e = 1$] 2	AEF for D , but not " $m = n$ "
(ii) EITHER OR		
<u>A 2 4 6 8</u>		
2 4 8 2 6 orders of elements		
4 8 6 4 2 1, 2, 4, 4		
6 2 4 6 8 OR cyclic group		
8 6 2 8 4		
B 1 5 7 11		
$\frac{1}{1}$ $\frac{1}{1}$ $\frac{5}{5}$ $\frac{7}{11}$ orders of elements		
5 5 1 11 7 1, 2, 2, 2 7 7 7 11 1 5 OR non-cyclic group		
/ / II I 5 OR Klein group		
11 11 7 5 1 Ok Kielli group		
$C \mid 2^0 2^1 2^2 2^3$		
		For showing group table
2^0 2^0 2^1 2^2 2^3 orders of elements		OR sufficient details of orders of elements OR stating cyclic / non-cyclic / Klein group
$\begin{vmatrix} 2^1 & 2^1 & 2^2 & 2^3 & 2^0 & 1, 2, 4, 4 \end{vmatrix}$		(as appropriate)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D1*	
$\begin{vmatrix} 2^3 & 2^3 & 2^0 & 2^1 & 2^2 \end{vmatrix}$	B1* B1*	for one of groups A , B , C for another of groups A , B , C
'	DI	for another of groups A, B, C
$A \ncong B$	B1	For stating non-isomorphic
$B \ncong C$	(dep*) B1	with sufficient detail For stating non-isomorphic
$D \neq \mathbb{C}$	(dep*)	relating to the first 2 marks
$A \cong C$	B1	For stating isomorphic
77 = 0	(dep*)	Tor stating isomorphic
	5	
(iii) $\frac{1+2m}{} \times \frac{1+2p}{} = \frac{1+2m+2p+4mp}{}$	M1*	For considering product of 2 distinct elements of this form
$\frac{1}{1+2n} \frac{1}{1+2q} \frac{1}{1+2n+2q+4nq}$	M1	For multiplying out
	(dep*)	1 or manapijing out
1+2(m+p+2mp) $1+2r$	A1	For simplifying to form shown
$= \frac{1+2(m+p+2mp)}{1+2(n+q+2nq)} = \frac{1+2r}{1+2s}$	A1 4	For identifying as correct form, so closed
		odd odd odd
		$\mathbf{SR} \frac{\text{odd}}{\text{odd}} \times \frac{\text{odd}}{\text{odd}} = \frac{\text{odd}}{\text{odd}} \text{earns full credit}$
		SR If clearly attempting to prove commutativity, allow
		at most M1
(iv) Closure not satisfied	B1	For stating closure
Identity and inverse not satisfied	B1 2	For stating identity and inverse
		SR If associativity is stated as not satisfied, then award
		at most B1 B0 OR B0 B1
	13	
		<u> </u>

1 (a)(i)	e, r^3, r^6, r^9	M1	For stating e , r^m (any $m cdots 2$), and 2 other different elements in terms of e and r
		A1 2	For all elements correct
(ii)	r generates G	B1 1	For this or any statement equivalent to: all elements of G are included in a group with e and r OR order of r > order of all possible proper subgroups
(b)	m, n, p, mn, np, pm	B1	For any 3 orders correct
		B1 2	For all 6 correct and no extras (Ignore 1 and mnp)
2	METHOD 1		
	$[1, 3, 2] \times [1, 2, -1]$	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation
	$\mathbf{n} = k[-7, 3, -1] \ OR \ 7x - 3y + z = c \ (= 17)$	A 1	For correct vector <i>OR</i> LHS of equation
	$\theta = \sin^{-1} \frac{ [1, 4, -1] \cdot [-7, 3, -1] }{\sqrt{1^2 + 4^2 + 1^2} \sqrt{7^2 + 3^2 + 1^2}}$	M1	For using correct vectors for line and plane f.t. from normal
	$\sqrt{1^2 + 4^2 + 1^2} \sqrt{7^2 + 3^2 + 1^2}$	M1* M1	For using scalar product of line and plane vectors For calculating both moduli in denominator
	$\theta = \sin^{-1} \frac{6}{\sqrt{18}\sqrt{59}} = 10.6^{\circ}$	A1√ (*dep)	For scalar product. f.t. from their numerator
	(10.609°, 0.18517)	A1 7	For correct angle
	METHOD 2		
	$[1, 3, 2] \times [1, 2, -1]$	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation
	$\mathbf{n} = k[-7, 3, -1] \ OR \ 7x - 3y + z = c$	A1	For correct vector <i>OR</i> LHS of equation
	7x - 3y + z = 17	M1√ M1	For attempting to find RHS of equation f.t. from n or LHS of equation For using distance formula from a point on the line,
	$d = \frac{ 21 - 12 + 2 - 17 }{\sqrt{7^2 + 3^2 + 1^2}} = \frac{6}{\sqrt{59}}$	A1√	e.g. (3, 4, 2), to the plane For correct distance. f.t. from equation
	$\theta = \sin^{-1} \frac{\frac{6}{\sqrt{59}}}{\sqrt{1^2 + 4^2 + 1^2}} = 10.6^{\circ}$	M1 A1	For using trigonometry For correct angle
	(10.609°, 0.18517)	7	
3 (i)	$\frac{\mathrm{d}z}{\mathrm{d}x} = 1 + \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	For differentiating substitution (seen or implied)
	$\frac{dz}{dx} - 1 = \frac{z+3}{z-1} \Rightarrow \frac{dz}{dx} = \frac{2z+2}{z-1} = \frac{2(z+1)}{z-1}$	A1 A1 3	For correct equation in <i>z</i> AEF For correct simplification to AG
(ii)	$\int \frac{z-1}{z+1} dz = 2 \int dx$	B1	For $\int \frac{z-1}{z+1} (dz)$ and $\int (1) (dx)$ seen or implied
	$\Rightarrow \int 1 - \frac{2}{z+1} dz \ OR \int 1 - \frac{2}{u} du = 2x (+c)$	M1	For rearrangement of LHS into integrable form <i>OR</i> substitution e.g. $u = z + 1$ or $u = z - 1$
	$\Rightarrow z - 2\ln(z+1) OR z + 1 - 2\ln(z+1)$ $= 2x (+c)$	A1	For correct integration of LHS as $f(z)$
	$\Rightarrow -2\ln(x+y+1) = x - y + c$	A1 4	For correct general solution AEF

7

4	(i)	cos	$^{5}\theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{5}$	B1		For $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ seen or implied
		,				z may be used for $e^{i\theta}$ throughout
		cos	$^{5}\theta = \frac{1}{32} \left(e^{i\theta} + e^{-i\theta} \right)^{5}$	M1		For expanding $\left(e^{i\theta} + e^{-i\theta}\right)^5$. At least 3 terms and
						2 binomial coefficients required <i>OR</i> reasonable attempt at expansion in stages
	cos ⁵	$\theta = \frac{1}{32} \left($	$e^{5i\theta} + e^{-5i\theta} + 5\left(e^{3i\theta} + e^{-3i\theta}\right) + 10\left(e^{i\theta} + e^{-i\theta}\right)$	$((\theta)$	A1	For correct binomial expansion
		cos	$^{5}\theta = \frac{1}{16}(\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$	M1 A1	5	For grouping terms and using multiple angles For answer obtained correctly AG
	(ii)	cos	$\theta = 16\cos^5\theta$	B1		For stating correct equation of degree 5
						$OR 1 = 16\cos^4\theta$ AEF
		\Rightarrow 0	$\cos \theta = 0$, $\cos \theta = \pm \frac{1}{2}$	M1		For obtaining at least one of the values of $\cos\theta$ from
			2			$\cos \theta = k \cos^5 \theta \ OR \text{ from } 1 = k \cos^4 \theta$
		⇒€	$\theta = \frac{1}{2}\pi, \ \frac{1}{3}\pi, \ \frac{2}{3}\pi$	A1		A1 for any two correct values of θ
		— (2 ", 3 ", 3 "	A1	4	A1 for the 3rd value and no more in 0,, θ ,, π
						Ignore values outside 0 ,, θ ,, π
				9]	

5 (i)	METHOD 1		
	Lines meet where		
	$(x =) k + 2\lambda = k + \mu$	M1	For using parametric form to find where lines meet
	$(y =) -1 - 5\lambda = -4 - 4\mu$	A1	For at least 2 correct equations
	$(z =) 1-3\lambda = -2\mu$		
		M1	For attempting to solve any 2 equations
	$\Rightarrow \lambda = -1, \mu = -2$	A1	For correct values of λ and μ
		B1	For attempting a check in 3rd equation
			OR verifying point of intersection is on both lines
	$\Rightarrow (k-2,4,4)$	A1 6	For correct point of intersection (allow vector)
		_	SR For finding λ <i>OR</i> μ and point of intersection, but no check, award up to M1 A1 M1 A0 B0 A1
	METHOD 2		
	$d = \frac{ [0, 3, 1] \cdot [2, -5, -3] \times [1, -4, -2] }{ \mathbf{b} \times \mathbf{c} }$		For using $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ with appropriate vectors (division
	$ \mathbf{b} \times \mathbf{c} $		by $ \mathbf{b} \times \mathbf{c} $ is not essential)
	$d = c[0, 3, 1] \cdot [-2, 1, -3] = 0$	B1	and showing $d = 0$ correctly
	⇒ lines intersect		
	Lines meet where		
	$(x =) (k+) 2\lambda = (k+) \mu$	M1	For using parametric form to find where lines meet
	$(y =) -1 - 5\lambda = -4 - 4\mu$	A1	For at least 2 correct equations
	$(z =) 1-3\lambda = -2\mu$		
		M1	For attempting to solve any 2 equations
	$\Rightarrow \lambda = -1, \mu = -2$	A1	For correct value of λ <i>OR</i> μ
	$\Rightarrow (k-2,4,4)$	A1	For correct point of intersection (allow vector)
	METHOD 3		
	e.g. $x-k = \frac{2(y+1)}{-5} = \frac{y+4}{-4}$	M1	For solving one pair of simultaneous equations
	$\Rightarrow y = 4$	A1	For correct value of x , y or z
	$\frac{z-1}{-3} = \frac{y+1}{-5}$	M1	For solving for the third variable
	x = k - 2 OR z = 4	A 1	For correct values of 2 of x , y and z
	$x-k = \frac{z}{-2}$ checks with $x = k - 2$, $z = 4$	B1	For attempting a check in 3rd equation
	$\Rightarrow (k-2,4,4)$	A1	For correct point of intersection (allow vector)
(ii)	METHOD 1		
	$\mathbf{n} = [2, -5, -3] \times [1, -4, -2]$	M1	For finding vector product of 2 directions
	$\mathbf{n} = c[-2, 1, -3]$	A1	For correct normal
			SR Following Method 2 for (i),
			award M1 A1 $$ for n , f.t. from their n
	(1, -1, 1) OR (1, -4, 0) OR (-1, 4, 4)	M1	For substituting a point in LHS
	$\Rightarrow 2x - y + 3z = 6$	A1 4	For correct equation of plane AEF cartesian
	METHOD 2		
	$\mathbf{r} = [1, -1, 1] + \lambda[2, -5, -3] + \mu[1, -4, -2]$	M1	For using vector equation of plane $(OR [1, -4, 0])$ for a)
	$x = 1 + 2\lambda + \mu$		F
	$y = -1 - 5\lambda - 4\mu$	A1	For writing 3 linear equations
	$z = 1 - 3\lambda - 2\mu$		
		M1	For eliminating λ and μ
	$\Rightarrow 2x - y + 3z = 6$	A1	For correct equation of plane AEF cartesian
		10	

6 (i)	When a, b have opposite signs,	M1	For considering sign of $a b $ OR $b a $ in general or in a specific case
	$a b = \pm ab$, $b a = \mp ba \implies a b \neq b a $	A1 2	For showing that $a b \neq b a $
			Note that $ x = \sqrt{x^2}$ may be used
(ii	$(a \circ b) \circ c = (a b) \circ c = a b c \ OR \ a bc $	M1	For using 3 distinct elements and simplifying $(a \circ b) \circ c$ OR $a \circ (b \circ c)$
	$a \circ (b \circ c) = a \circ (b c) = a b c = a b c OR a bc $	A1 M1 A1 4	For obtaining correct answer For simplifying the other bracketed expression For obtaining the same answer
(ii	(i)	B1*	For stating $e = \pm 1$ OR no identity
	EITHER $a \circ e = a \mid e \mid = a \implies e = \pm 1$	M1	For attempting algebraic justification of $+1$ and -1 for e
	$OR e \circ a = e a = a$ $\Rightarrow e = 1 \text{ for } a > 0, \ e = -1 \text{ for } a < 0$	A1	For deducing no (unique) identity
	Not a group	B1 (*dep)	For stating not a group
		4 10	

7 (i)

Polar or cartesian values of ω and ω^2 may be used anywhere in this question

For showing 3 points in approximately correct **B**1

Allow ω and ω^2 interchanged, or unlabelled

(ii) EITHER $1+\omega+\omega^2$

= sum of roots of cubic = 0

M1A1

For result shown by any correct method AG

 $OR \quad \omega^3 = 1 \Rightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$

 $\Rightarrow 1 + \omega + \omega^2 = 0 \text{ (for } \omega \neq 1)$

OR sum of G.P.

$$1 + \omega + \omega^2 = \frac{1 - \omega^3}{1 - \omega} \left(= \frac{0}{1 - \omega} \right) = 0$$

shown on Argand diagram or explained in terms of

Reference to vectors in part (i) diagram may be made

$$1 + \operatorname{cis} \frac{2}{3}\pi + \operatorname{cis} \frac{4}{3}\pi = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 0$$

 $(2+\omega)(2+\omega^2) = 4 + 2(\omega + \omega^2) + \omega^3$ (iii) (a)

For using $1 + \omega + \omega^2 = 0$ OR values of ω , ω^2

A1 2 For correct answer

 $\frac{1}{2+\omega} + \frac{1}{2+\omega^2} = \frac{2+(\omega+\omega^2)+2}{3} = 1$

For combining fractions OR multiplying top and bottom of 2 fractions by complex conjugates

 $A1\sqrt{2}$ For correct answer f.t. from (a)

For the cubic $x^3 + px^2 + qx + r = 0$ (iv)

METHOD 1

 $\sum \alpha = 2 + 1 = 3 \implies p = -3$

For calculating two of $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$

 $\sum \alpha \beta = \frac{2}{2+\omega} + \frac{2}{2+\omega^2} + \frac{1}{3} = \frac{7}{3} (=q)$

For calculating all of $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$

M1

OR all of p, q, rFor at least two of $\sum \alpha$, $\sum \alpha \beta$, $\alpha \beta \gamma$ correct

 $\alpha\beta\gamma = \frac{2}{3} \quad \left(\Rightarrow r = -\frac{2}{3} \right)$

(or values of p, q, r)

 $\Rightarrow 3x^3 - 9x^2 + 7x - 2 = 0$

For correct equation CAO A1

$$\left(x-2\right)\left(x-\frac{1}{2+\omega}\right)\left(x-\frac{1}{2+\omega^2}\right) = 0$$

 $x^{3} + \left(-2 - \frac{1}{2 + \omega} - \frac{1}{2 + \omega^{2}}\right)x^{2}$

M1

M1

A1

For multiplying out LHS in terms of ω or cis $\frac{1}{3}k\pi$

$$+\left(\frac{1}{\left(2+\omega\right)\left(2+\omega^{2}\right)}+\frac{2}{2+\omega}+\frac{2}{2+\omega^{2}}\right)x$$

 $-\frac{2}{\left(2+\omega\right)\left(2+\omega^2\right)}=0$ M1

For simplifying, using parts (ii), (iii) or values of ω

 $\Rightarrow x^3 - 3x^2 + \frac{7}{3}x - \frac{2}{3} = 0$

A1 For at least two of p, q, r correct

 $\Rightarrow 3x^3 - 9x^2 + 7x - 2 = 0$

A1 For correct equation CAO

11

8 (i)	$m^2 + 1 = 0 \implies m = \pm i$	M1		For stating and attempting to solve correct auxiliary equation
	$\Rightarrow \text{C.F.}$ $(y =) Ce^{ix} + De^{-ix} = A\cos x + B\sin x$	A1	2	For correct C.F. (must be in trig form) SR If some or all of the working is omitted, award full credit for correct answer
(ii)(a)	$y = p(\ln \sin x)\sin x + qx\cos x$	M1		For attempting to differentiate P.I. (product rule needed at least once)
$\frac{\mathrm{d}y}{\mathrm{d}x} = p^{\frac{1}{2}}$	$\frac{\cos x}{\sin x}\sin x + p(\ln\sin x)\cos x + q\cos x - qx\sin x$	A1		For correct (unsimplified) result AEF
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -$	$-p\sin x - p(\ln\sin x)\sin x + \frac{p\cos^2 x}{\sin x}$	A1		For correct (unsimplified) result AEF
	$-2q\sin x - qx\cos x$			
	$-p\sin x + \frac{p\cos^2 x}{\sin x} - 2q\sin x \equiv \frac{1}{\sin x}$	M1		For substituting their $\frac{d^2y}{dx^2}$ and y into D.E.
		M1		For using $\sin^2 x + \cos^2 x = 1$
	$\Rightarrow p - 2(p+q)\sin^2 x \equiv 1$	A1	6	For simplifying to \mathbf{AG} (\equiv may be $=$)
(b)		M1		For attempting to find p and q by equating coefficients of constant and $\sin^2 x$ <i>AND/OR</i> giving value(s) to x (allow any value for x , including 0)
	p = 1, q = -1	A1	2	For both values correct
(iii)	G.S. $y = A\cos x + B\sin x + (\ln\sin x)\sin x - x\cos x$	B1√		For correct G.S. f.t. from their C.F. and P.I. with 2 arbitrary constants in C.F. (allow given form of P.I. if <i>p</i> and <i>q</i> have not been found)
	$\csc x$ undefined at $x = 0, \pi, 2\pi$	M1		For considering domain of $\csc x \ OR \sin x \neq 0$
	$OR \sin x > 0$ in $\ln \sin x$			$OR \ln \sin x$ term
	$\Rightarrow 0 < x < \pi$	A1	3	For stating correct range CAO SR Award B1 for correct answer with justification omitted or incorrect
		13	3	

1 (i) (a)	(n =) 3	B1 1	For correct <i>n</i>
(b)	(n =) 6	B1 1	For correct <i>n</i>
(c)	(n=) 4	B1 1	For correct <i>n</i>
(ii)	(n =) 4, 6	B1	For either 4 or 6
		B1 2	For both 4 and 6 and no extras
			Ignore all n8
			SR B0 B0 if more than 3 values given, even if they include 4 or 6
		5	
2 (i)	$\frac{\sqrt{3} + i}{\sqrt{3} - i} \times \frac{\sqrt{3} + i}{\sqrt{3} + i} = \frac{1}{2} + \frac{1}{2}i\sqrt{3}$	M1	For multiplying top and bottom by complex conjugate
	$OR \frac{\sqrt{3} + i}{\sqrt{3} - i} = \frac{2e^{\frac{1}{6}\pi i}}{2e^{-\frac{1}{6}\pi i}}$		OR for changing top and bottom to polar form
	$=(1)e^{\frac{1}{3}\pi i}$	A 1	For $(r =)$ 1 (may be implied)
		A1 3	For $(\theta =) \frac{1}{3} \pi$
			SR Award maximum A1 A0 if e ^{iθ} form is not seen
(*• <u>)</u>	(17:)6	M1	For use of $e^{2\pi i} = 1$, $e^{i\pi} = -1$,
(ii)	$\left(e^{\frac{1}{3}\pi i}\right)^6 = e^{2\pi i} = 1 \implies (n =) 6$	A1 2	$\sin k\pi = 0$ or $\cos k\pi = \pm 1$ (may be implied) For $(n =)$ 6 SR For $(n =)$ 3 only, award M1 A0
		5	SKT of (n =) 3 only, uward 1711 110
3 (i)	$\mathbf{n} = [2, 1, 3] \times [3, 1, 5]$	M1	For using direction vectors and attempt to find vector product
	=[2,-1,-1]	A1 2	For correct direction (allow multiples)
(ii)	$d = \frac{ [5, 2, 1] \cdot [2, -1, -1] }{\sqrt{\epsilon}}$	B1	For $(\mathbf{AB} =) [5, 2, 1]$ or any vector joining lines
	$\sqrt{6}$	M1	For attempt at evaluating AB.n
		M1	For $ \mathbf{n} $ in denominator
	$=\frac{7}{\sqrt{6}}=\frac{7}{6}\sqrt{6}=2.8577$	A1 4	For correct distance
		6	

1	$m^2 + 4m + 5 (= 0) \Rightarrow m = \frac{-4 \pm \sqrt{16 - 20}}{2}$	M1	For attempt to solve correct auxiliary equation
4		A1	For correct roots
	$CF = e^{-2x} (C\cos x + D\sin x)$	A1√	For correct CF (here or later). f.t. from m AEtrig but not forms including e^{ix}
	$PI = p\sin 2x + q\cos 2x$	B1	For stating a trial PI of the correct form
	$y' = 2p\cos 2x - 2q\sin 2x$ $y'' = -4p\sin 2x - 4q\cos 2x$	M1	For differentiating PI twice and substituting into
	cos 2x(-4q+8p+5q)		the DE
	$+\sin 2x(-4p-8q+5p) = 65\sin 2x$	A1	For correct equation
	$ \begin{cases} 8p + q = 0 \\ p - 8q = 65 \end{cases} \qquad p = 1, q = -8 $	M1	For equating coefficients of $\cos 2x$ and $\sin 2x$ and attempting to solve for p and/or q
	$PI = \sin 2x - 8\cos 2x$	A1	For correct p and q
	$\Rightarrow y = $ $e^{-2x} (C\cos x + D\sin x) + \sin 2x - 8\cos 2x$	B1√ 9	For using $GS = CF + PI$, with 2 arbitrary constants in CF and none in PI
		9	
	1 dv du 1	M1	For differentiating substitution
5 (i)	$y = u - \frac{1}{x} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{x^2}$	A1	For correct expression
	$x^{3} \left(\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{x^{2}} \right) = x \left(u - \frac{1}{x} \right) + x + 1$	M1	For substituting y and $\frac{dy}{dx}$ into DE
	$\Rightarrow x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = u$	A1 4	For obtaining correct equation AG
(ii)	METHOD 1 $\int \frac{1}{u} du = \int \frac{1}{x^2} dx \implies \ln ku = -\frac{1}{x}$	M1 A1	For separating variables and attempt at integration For correct integration (<i>k</i> not required here)
	$ku = e^{-1/x} \implies k\left(y + \frac{1}{x}\right) = e^{-1/x}$	M1 M1	For any 2 of For all 3 of $\begin{cases} k \text{ seen,} \\ \text{exponentiating,} \\ \text{substituting for } u \end{cases}$
	$\Rightarrow y = Ae^{-1/x} - \frac{1}{x}$	A1 5	
	METHOD 2		
	$\frac{du}{dx} - \frac{1}{x^2}u = 0 \implies \text{I.F. } e^{\int -1/x^2 dx} = e^{1/x}$	M1	For attempt to find I.F.
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \Big(u \mathrm{e}^{1/x} \Big) = 0$	A1	For correct result
	$u e^{1/x} = k \implies y + \frac{1}{x} = k e^{-1/x}$	M1 M1	From $u \times I.F. = $, for k seen for substituting for u } in either
			order
	$\Rightarrow y = k e^{-1/x} - \frac{1}{x}$	A1	For correct solution AEF in form $y = f(x)$
	**	9	

6 (i)	METHOD 1			
	Use 2 of [-4, 2, 0], [0, 0, 3], [-4, 2, 3], [4, -2, 3] or multiples	M1		For finding vector product of 2 appropriate vectors in plane <i>ACGE</i>
	$\mathbf{n} = k \ [1, 2, 0]$	A 1		For correct n
	Use A[4, 0, 0], C[0, 2, 0], G[0, 2, 3] OR E[4, 0, 3]	M1		For substituting a point in the plane
	r. [1, 2, 0] = 4	A1	4	For correct equation. AEF in this form
	METHOD 2 $\mathbf{r} = [4, 0, 0] + \lambda[-4, 2, 0] + \mu[0, 0, 3]$	M1		For writing plane in 2-parameter form
	$\Rightarrow x = 4 - 4\lambda, y = 2\lambda, z = 3\mu$	A1		For 3 correct equations
	x + 2y = 4	M1		For eliminating λ (and μ)
	\Rightarrow r .[1, 2, 0] = 4	A 1		For correct equation. AEF in this form
(ii)	$\theta = \cos^{-1} \frac{ [3, 0, -4] \cdot [1, 2, 0] }{\sqrt{3^2 + 0^2 + 4^2} \sqrt{1^2 + 2^2 + 0^2}}$	B1\ M1		For using correct vectors (allow multiples). f.t. from n
	$\sqrt{3^2 + 0^2 + 4^2} \sqrt{1^2 + 2^2 + 0^2}$	M1		For using scalar product For multiplying both moduli in denominator
	$\theta = \cos^{-1} \frac{3}{5\sqrt{5}} = 74.4^{\circ}$	A1	4	For correct angle
(;;;)	(74.435°, 1.299)	M1		For obtaining parametric expression for AM
(iii)	AM: $(\mathbf{r} =) [4, 0, 0] + t[-2, 2, 3]$ (or [2, 2, 3] + t[-2, 2, 3])	A1		For correct expression seen or implied
	3(4-2t)-4(3t) = 0			-
	$(or \ 3(2-2t)-4(3+3t)=0)$	M1		For finding intersection of AM with ACGE
	$t = \frac{2}{3}$ (or $t = -\frac{1}{3}$) OR $\mathbf{w} = \left[\frac{8}{3}, \frac{4}{3}, 2\right]$	A1		For correct t OR position vector
	AW:WM=2:1	A1	5	For correct ratio
		13	3	
7 (i) (a)	$x + y - a \in \mathbf{R}$	B1		For stating closure is satisfied
	(x * y) * z = (x + y - a) * z = x + y + z - 2a	M1		For using 3 distinct elements bracketed both ways
	x*(y*z) = x*(y+z-a) = x+y+z-2a	A1		For obtaining the same result twice for associativity
				SR 3 distinct elements bracketed once, expanded, and symmetry noted scores M1 A1
	$x + e - a = x \implies e = a$	B1 M1		For stating identity = a
	$x + x^{-1} - a = a \implies x^{-1} = 2a - x$	A1	6	For attempting to obtain inverse of x For obtaining inverse $= 2a - x$
				<i>OR</i> for showing that inverses exist, where $x + x^{-1} = 2a$
(b)	$x + y - a = y + x - a \Rightarrow$ commutative	B1	1	For stating commutativity is satisfied, with justification
	$x \text{ order } 2 \Rightarrow x * x = e \Rightarrow 2x - a = e$	M1		For obtaining equation for an element of order
(c)	$\Rightarrow 2x - a = a \Rightarrow x = a = e$	A1	2	2 For solving and showing that the only solution
	$OR \ x = x^{-1} \Rightarrow x = 2a - x \Rightarrow x = a = e$			For solving and showing that the only solution is the identity (which has order 1)
	\Rightarrow no elements of order 2			OR For proving that there are no self-inverse
			- -	elements (other than the identity)

(ii)			
(11)	e.g. $2+1-5=-2 \notin R^+$	M1	For attempting to disprove closure
	⇒ not closed	A1	For stating closure is not necessarily satisfied $(0 < x + y, 5]$ required)
	e.g. $2 \times 5 - 11 = -1 \notin \mathbb{R}^+$	M1	For attempting to find an element with no inverse
	⇒ no inverse	A1 4	For stating inverse is not necessarily satisfied $(x10 \text{ required})$
		13	
8 (i)	1 ()		z may be used for $e^{i\theta}$ throughout
0 (1)	$\sin\theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$	B1	For expression for $\sin\theta$ seen or implied
		M1	For expanding $\left(e^{i\theta} - e^{-i\theta}\right)^6$
	$\sin^6 \theta =$		At least 4 terms and 3 binomial coefficients required.
	$-\frac{1}{64} \left(e^{6i\theta} - 6e^{4i\theta} + 15e^{2i\theta} - 20 + 15e^{-2i\theta} - 6e^{-4\theta} \right)$,	For correct expansion. Allow $\frac{\pm(i)}{64}(\cdots)$
	$= -\frac{1}{64} (2\cos 6\theta - 12\cos 4\theta + 30\cos 2\theta - 20)$	A1 M1	For grouping terms and using multiple angles
	$\sin^6\theta = -\frac{1}{32} \left(\cos 6\theta - 6\cos 4\theta + 15\cos 2\theta - 10\right)$	A1 5	For answer obtained correctly AG
(ii)	$\cos^6\theta = OR\sin^6\left(\frac{1}{2}\pi - \theta\right) =$	M1	For substituting $(\frac{1}{2}\pi - \theta)$ for θ throughout
	$-\frac{1}{32}(\cos(3\pi - 6\theta) - 6\cos(2\pi - 4\theta) + 15\cos(\pi - 6\theta))$		
		A1	For correct unsimplified expression
	$\cos^6 \theta = \frac{1}{32} (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10)$	A1 3	For correct expression with $\cos n\theta$ terms AEF
(iii)	$\int_{0}^{\frac{1}{4}\pi} \frac{1}{32} (-2\cos 6\theta - 30\cos 2\theta) d\theta$	B1√	For correct integral. f.t. from $\sin^6 \theta - \cos^6 \theta$
	$1 \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	M1	For integrating $\cos n\theta$, $\sin n\theta$ or $e^{in\theta}$
	$= -\frac{1}{16} \left[\frac{1}{6} \sin 6\theta + \frac{15}{2} \sin 2\theta \right]_{0}^{\frac{1}{4}\pi}$	A1√	For correct integration. f.t. from integrand
	$=-\frac{11}{24}$	A1 4	For correct answer WWW
	~ .	12	

1		$\left(\frac{1}{2}\sqrt{3} + \frac{1}{2}i\right)^{\frac{1}{3}} = \left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)^{\frac{1}{3}}$	B1	For arg $z = \frac{1}{6}\pi$ seen or implied
		$=\cos\frac{1}{18}\pi+i\sin\frac{1}{18}\pi,$	M1	For dividing $\arg z$ by 3
		$\cos\frac{13}{18}\pi + i\sin\frac{13}{18}\pi$,	A1	For any one correct root
		$\cos \frac{25}{18} \pi + i \sin \frac{25}{18} \pi$	A1 4	For 2 other roots and no more in range 0 ,, $\theta < 2\pi$
		10 10	4	
2 (i)	$\frac{1}{5}e^{-\frac{1}{3}\pi i}$	B1 1	For stating correct inverse in the form $re^{i\theta}$
(ii	i)	$r_1 e^{i\theta} \times r_2 e^{i\phi} = r_1 r_2 e^{i(\theta + \phi)}$	M1 A1 2	For stating 2 distinct elements multiplied For showing product of correct form
(ii	ii)	$Z^2 = e^{2i\gamma}$	B1	For e ^{2iγ} seen or implied
Ì	ŕ	$\Rightarrow e^{2i\gamma-2\pi i}$	B1 2	For correct answer. aef
			5	
3 (i))	$[6-4\lambda, -7+8\lambda, -10+7\lambda]$ on p $\Rightarrow 3(6-4\lambda)-4(-7+8\lambda)-2(-10+7\lambda)=8$	B1 M1	For point on l seen or implied For substituting into equation of p
		$\Rightarrow \lambda = 1 \Rightarrow (2, 1, -3)$	A1 3	For correct point. Allow position vector
(ii	i)	METHOD 1		
		$\mathbf{n} = [-4, 8, 7] \times [3, -4, -2]$	M1* M1 (*dep)	For direction of l and normal of p seen For attempting to find $\mathbf{n}_1 \times \mathbf{n}_2$
		$\mathbf{n} = k[12, 13, -8]$	A1	For correct vector
		(2,1,-3) OR $(6,-7,-10)$	M1	For finding scalar product of their point on l with their attempt at \mathbf{n} , or equivalent
		$\Rightarrow 12x + 13y - 8z = 61$	A1 5	For correct equation, aef cartesian
		METHOD 2		
		$\mathbf{r} = [2, 1, -3] OR [6, -7, -10]$	M1 A1√	For stating eqtn of plane in parametric form (may be implied by next stage), using $[2, 1, -3]$ (ft from
		$+\lambda[-4, 8, 7] + \mu[3, -4, -2]$	AIV	(i) Or $[6, -7, -10]$, \mathbf{n}_1 and \mathbf{n}_2 (as above)
		$x = 2 - 4\lambda + 3\mu$	M1	For writing as 3 linear equations
		$y = 1 + 8\lambda - 4\mu$	M1	For attempting to eliminate λ and μ
		$z = -3 + 7\lambda - 2\mu$		
		$\Rightarrow 12x + 13y - 8z = 61$	A1	For correct equation aef cartesian
		METHOD 3	N/1	
		$3(6+3\mu)-4(-7-4\mu)-2(-10-2\mu)=8$	M1	For finding foot of perpendicular from point on l to p
		$\Rightarrow \mu = -2 \Rightarrow (0, 1, -6)$ From 2 minute (2.1 - 2) (6 - 7 - 10) (0.1)	A1	For correct point or position vector
		From 3 points $(2, 1, -3)$, $(6, -7, -10)$, $(0, -7, -10)$, $(0, -7, -10)$	1, -6),	
		[2, 0, 3], [6, -8, -4], [-4, 8, 7]	M1	Use vector product of 2 vectors in plane
		$\Rightarrow \mathbf{n} = k[12, 13, -8]$		
		(2,1,-3) OR $(6,-7,-10)$	M1	For finding scalar product of their point on l with their attempt at \mathbf{n} , or equivalent
		$\Rightarrow 12x + 13y - 8z = 61$	A1	For correct equation aef cartesian
			8	

4 (i)	IF $e^{\int \frac{1}{1-x^2} dx} = e^{\frac{1}{2} \ln \frac{1+x}{1-x}} = \left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}$	M1 A1 2	For IF stated or implied. Allow $\pm \int$ and omission of dx For integration and simplification to AG (intermediate step must be seen)
(ii)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(y \left(\frac{1+x}{1-x} \right)^{\frac{1}{2}} \right) = (1+x)^{\frac{1}{2}}$	M1*	For multiplying both sides by IF
	$y\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}} = \frac{2}{3}(1+x)^{\frac{3}{2}} + c$	M1	For integrating RHS to $k(1+x)^n$
	$y\left(\frac{1-x}{1-x}\right) = \frac{2}{3}(1+x)^2 + c$	A1	For correct equation (including $+ c$)
	$(0,2) \Rightarrow 2 = \frac{2}{3} + c \Rightarrow c = \frac{4}{3}$	M1 (*dep) M1 (*dep)	In either order: For substituting $(0, 2)$ into their GS (including $+c$) For dividing solution through by IF, including dividing c or their numerical value for c
	$y = \frac{2}{3}(1+x)(1-x)^{\frac{1}{2}} + \frac{4}{3}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}}$	A1 6	For correct solution aef (even unsimplified) in form $y = f(x)$
		8	
5 (i)	$m^2 - 6m + 9 (= 0) \Rightarrow m = 3$	M1 A1	For attempting to solve correct auxiliary equation For correct <i>m</i>
	$CF = (A + Bx)e^{3x}$	A1 3	For correct CF
(ii)	ke^{3x} and kxe^{3x} both appear in CF	B1 1	For correct statement
(iii)	$y = kx^2 e^{3x} \implies y' = 2kxe^{3x} + 3kx^2 e^{3x}$	M1 A1	For differentiating kx^2e^{3x} twice For correct y' aef
	$\Rightarrow y'' = 2ke^{3x} + 12kxe^{3x} + 9kx^2e^{3x}$	A1	For correct y'' aef
	$\Rightarrow ke^{3x} (2+12x+9x^2-12x-18x^2+9x^2) = e^{3x}$	M1	For substituting y'' , y' , y into DE
	$\Rightarrow k = \frac{1}{2}$	A1 5	For correct k
	-	9	

6 (i)	METHOD 1	M1	For attempting to find vector product of the pair of
	$\mathbf{n}_1 = [1, 1, 0] \times [1, -5, -2]$	1711	direction vectors
	=[-2, 2, -6] = k[1, -1, 3]	A1	For correct \mathbf{n}_1
	Use (2, 2, 1)	M1	For substituting a point into equation
	\Rightarrow r .[-2, 2, -6] = -6 \Rightarrow r .[1, -1, 3] = 3	A1 4	For correct equation. aef in this form
	METHOD 2		
	$x = 2 + \lambda + \mu$	M1	For writing as 3 linear equations
	$y = 2 + \lambda - 5\mu$	M1	For attempting to eliminate λ and μ
	$z = 1$ -2μ		
	$\Rightarrow x - y + 3z = 3$	A1	For correct cartesian equation
	\Rightarrow r .[1, -1, 3] = 3	A1	For correct equation. aef in this form
(ii)	For $\mathbf{r} = \mathbf{a} + t\mathbf{b}$		
	METHOD 1 $\mathbf{b} = [1, -1, 3] \times [7, 17, -3]$	M1	For attempting to find $\mathbf{n}_1 \times \mathbf{n}_2$
	= k[2, -1, -1]	A1√	For a correct vector. ft from \mathbf{n}_1 in (i)
			•
	e.g. x , y or $z = 0$ in $\begin{cases} x - y + 3z = 3 \\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to find a point on the line
	\Rightarrow a = $\left[0, \frac{3}{2}, \frac{3}{2}\right]$ OR $\left[3, 0, 0\right]$ OR $\left[1, 1, 1\right]$	A1√	For a correct vector. ft from equation in (i) SR a correct vector may be stated without working
	Line is (e.g.) $\mathbf{r} = [1, 1, 1] + t[2, -1, -1]$	A1√ 5	For stating equation of line ft from \mathbf{a} and \mathbf{b} \mathbf{SR} for $\mathbf{a} = [2, 2, 1]$ stated award M0
	METHOD 2		
	Solve $\begin{cases} x - y + 3z = 3 \\ 7x + 17y - 3z = 21 \end{cases}$		In either order:
	7x + 17y - 3z = 21	M1	For attempting to solve equations
	by eliminating one variable (e.g. z)		
	Use parameter for another variable (e.g. x) to find other variables in terms of t	M1	For attempting to find parametric solution
		A1√	For correct expression for one variable
	(eg) $y = \frac{3}{2} - \frac{1}{2}t$, $z = \frac{3}{2} - \frac{1}{2}t$	A1	For correct expression for the other variable
			ft from equation in (i) for both
	Line is (eg) $\mathbf{r} = \left[0, \frac{3}{2}, \frac{3}{2}\right] + t[2, -1, -1]$	A1√	For stating equation of line. ft from parametric solutions
	METHOD 3		
	eg x, y or $z = 0$ in $\begin{cases} x - y + 3z = 3 \\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to find a point on the line
	$\Rightarrow \mathbf{a} = \left[0, \frac{3}{2}, \frac{3}{2}\right] OR \left[3, 0, 0\right] OR \left[1, 1, 1\right]$	A1√	For a correct vector. ft from equation in (i) SR a correct vector may be stated without working SR for a = [2, 2, 1] stated award M0
	eg [3, 0, 0] – [1, 1, 1]	M1	For finding another point on the line and using it wit the one already found to find b
	$\mathbf{b} = k[2, -1, -1]$	A1	For a correct vector. ft from equation in (i)
	Line is (eg) $\mathbf{r} = [1, 1, 1] + t[2, -1, -1]$	A 1√	For stating equation of line. ft from a and b

6 (ii)	METHOD 4			
	A point on Π_1 is	M1		For using parametric form for Π_1
	$[2 + \lambda + \mu, 2 + \lambda - 5\mu, 1 - 2\mu]$	IVII		and substituting into Π_2
	On $\Pi_2 \Rightarrow$			
	$[2+\lambda+\mu, 2+\lambda-5\mu, 1-2\mu] \cdot [7, 17, -3] = 21$	A1		For correct unsimplified equation
	$\Rightarrow \lambda - 3\mu = -1$	A1		For correct equation
	Line is (e.g.) $\mathbf{r} = [2, 2, 1] + (3\mu - 1)[1, 1, 0] + \mu[1, -5, -2]$	M1		For substituting into Π_1 for λ or μ
	\Rightarrow r = [1, 1, 1] $or \left[\frac{7}{3}, \frac{1}{3}, \frac{1}{3} \right] + t [2, -1, -1]$	A1		For stating equation of line
		9	•]	
7 (i)	$\cos 3\theta + i\sin 3\theta = c^3 + 3ic^2s - 3cs^2 - is^3$	M1		For using de Moivre with $n = 3$
	$\Rightarrow \cos 3\theta = c^3 - 3cs^2$ and	A1		For both expressions in this form (seen or implied)
	$\sin 3\theta = 3c^2s - s^3$			SR For expressions found without de Moivre M0 A0
	$\Rightarrow \tan 3\theta = \frac{3c^2s - s^3}{c^3 - 3cs^2}$	M1		For expressing $\frac{\sin 3\theta}{\cos 3\theta}$ in terms of c and s
	$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} = \frac{\tan\theta (3 - \tan^2\theta)}{1 - 3\tan^2\theta}$	A1	4	For simplifying to AG
(ii) (a)	$\theta = \frac{1}{12} \pi \Rightarrow \tan 3\theta = 1$			
	$\Rightarrow 1 - 3t^2 = t(3 - t^2) \Rightarrow$	B1	1	For both stages correct AG
	$t^3 - 3t^2 - 3t + 1 = 0$			
(b)	$(t+1)(t^2 - 4t + 1) = 0$	M1		For attempt to factorise cubic
		A 1		For correct factors
	\Rightarrow $(t=-1), \ t=2\pm\sqrt{3}$	A1		For correct roots of quadratic
	$-$ sign for smaller root \Rightarrow	A1	4	For choice of – sign and correct root AG
	$\tan\frac{1}{12}\pi = 2 - \sqrt{3}$			
(iii)	$dt = (1+t^2) d\theta$	В1		For differentiation of substitution
	$dt = (1+t) d\theta$			and use of $\sec^2 \theta = 1 + \tan^2 \theta$
	$\Rightarrow \int_0^{\frac{1}{12}\pi} \tan 3\theta d\theta$	B1		For integral with correct θ limits seen
	$= \left[\frac{1}{3}\ln\left(\sec 3\theta\right)\right]_0^{\frac{1}{12}\pi} = \frac{1}{3}\ln\left(\sec \frac{1}{4}\pi\right)$	M1		For integrating to $k \ln(\sec 3\theta)$ OR $k \ln(\cos 3\theta)$
	1. 7. 1	M1		For substituting limits
	$= \frac{1}{3} \ln \sqrt{2} = \frac{1}{6} \ln 2$	1,11		and $\sec \frac{1}{4}\pi = \sqrt{2}$ OR $\cos \frac{1}{4}\pi = \frac{1}{\sqrt{2}}$ seen
		A 1	5	For correct answer aef
		14	4	

8 (i)	$a^2 = (ap)^2 = apap \implies a = pap$	B1	For use of given properties to obtain AG
	$p^2 = (ap)^2 = apap \implies p = apa$	B1 2	For use of given properties to obtain AG SR allow working from AG to obtain relevant properties
(ii)	$(p^2)^2 = p^4 = e \implies \text{order } p^2 = 2$	B1	For correct order with no incorrect working seen
	$\left(a^2\right)^2 = \left(p^2\right)^2 = e \implies \text{order } a = 4$	B1	For correct order with no incorrect working seen
	$(ap)^4 = a^4 = e \implies \text{order } ap = 4$	B1	For correct order with no incorrect working seen
	$(ap^2)^2 = ap^2ap^2 = ap \cdot a \cdot p = a^2$	M1	For relevant use of (i) or given properties
	$OR \ ap^2 = a \cdot a^2 = a^3 \Rightarrow$ $\left(ap^2\right)^2 = a^6 = a^2$	A1 5	For correct order with no incorrect working seen
	\Rightarrow order $ap^2 = 4$		
(iii)	METHOD 1 $p^2 = a^2, \ ap^2 = a^3$	M2	For use of the given properties to simplify p^2 and ap^2
	$\Rightarrow \{e, a, p^2, ap^2\} = \{e, a, a^2, a^3\}$	A1	For obtaining a^2 and a^3
	which is a cyclic group	A1 4	For justifying that the set is a group
	METHOD 2 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	For attempting closure with all 9 non-trivial products seen For all 16 products correct
	Completed table is a cyclic group	B2	For justifying that the set is a group
	METHOD 3 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	For attempting closure with all 9 non-trivial products seen
	$\begin{vmatrix} a & a & p^2 & ap^2 & e \\ p^2 & p^2 & ap^2 & e & a \\ ap^2 & ap^2 & e & a & p^2 \end{vmatrix}$	A1	For all 16 products correct
	$ap^2 \mid ap^2 e a p^2$		
	Identity = <i>e</i> Inverses exist since EITHER: <i>e</i> is in each row/column	B1	For stating identity
	OR: p^2 is self-inverse; a , ap^2 form an inverse pair	B1	For justifying inverses ($e^{-1} = e$ may be assumed)
	miveise pan		

(iv)	METHOD 1 e.g. $a \cdot ap = a^2p = p^3$ $ap \cdot a = p$ commutative	M1 M1 B1 A1 4	For attempting to find a non-commutative pair of elements, at least one involving a (may be embedded in a full or partial table) For simplifying elements both ways round For a correct pair of non-commutative elements For stating Q non-commutative, with a clear argument
	METHOD 2 Assume commutativity, so (eg) $ap = pa$	M1	For setting up proof by contradiction
	(i) \Rightarrow $p = ap.a \Rightarrow p = pa.a = pa^2 = pp^2 = p^3$	M1	For using (i) and/or given properties
	But p and p^3 are distinct	B1	For obtaining and stating a contradiction
	$\Rightarrow Q$ is non-commutative	A1	For stating Q non-commutative, with a clear argument
		15	

4727 Further Pure Mathematics 3

1	METHOD 1		
	line segment between l_1 and $l_2 = \pm [4, -3, -9]$	B1	For correct vector
	$\mathbf{n} = [1, -1, 2] \times [2, 3, 4] = (\pm)[-2, 0, 1]$	M1*	For finding vector product of direction
	[4 -3 -9] [-2 0 1] 17	A1	vectors
	distance = $\frac{ [4, -3, -9] \cdot [-2, 0, 1] }{\left(\sqrt{2^2 + 0^2 + 1^2}\right)} = \frac{17}{\left(\sqrt{5}\right)}$	M1 (*dep)	For using numerator of distance formula
	≠ 0 , so skew	A1 5	For correct scalar product and correct conclusion
	METHOD 2 lines would intersect where		
	$ \begin{vmatrix} 1 + s = -3 + 2t \\ -2 - s = 1 + 3t \\ -4 + 2s = 5 + 4t \end{vmatrix} \implies \begin{cases} s - 2t = -4 \\ s + 3t = -3 \\ 2s - 4t = 9 \end{cases} $	B1	For correct parametric form for either
	$ \begin{array}{ccc} -2 - s &= & 1 + 3t \\ -4 + 2s &= & 5 + 4t \end{array} $ $ \begin{array}{ccc} s + 3t &= -3 \\ 2s - 4t - 9 $	M1*	line For 3 equations using 2 different
	4 + 23 - 3 + 4i (23 $4i - 7$		parameters
		A1	P
		M1 (*dep)	For attempting to solve to show (in)consistency
	⇒ contradiction, so skew	A1	For correct conclusion
	, 1000000000000000000000000000000000000	5	
2 (i)	$(a+b\sqrt{5})(c+d\sqrt{5})$	M1	For using product of 2 distinct elements
2 (1)		IVII	For using product of 2 distinct elements
	$= ac + 5bd + (bc + ad)\sqrt{5} \in H$	A1 2	For correct expression
(ii)	$(e =) 1 OR 1 + 0\sqrt{5}$	B1 1	For correct identity
(iii)	EITHER $\frac{1}{a+b\sqrt{5}} \times \frac{a-b\sqrt{5}}{a-b\sqrt{5}}$	M1	For correct inverse as $(a+b\sqrt{5})^{-1}$
	• • •		and multiplying top and bottom by
	$OR\left(a+b\sqrt{5}\right)\left(c+d\sqrt{5}\right)=1 \Rightarrow \begin{cases} ac+5bd=1\\ bc+ad=0 \end{cases}$		$a-b\sqrt{5}$ <i>OR</i> for using definition and equating
	a h =		parts
	inverse = $\frac{a}{a^2 - 5b^2} - \frac{b}{a^2 - 5b^2} \sqrt{5}$	A1 2	For correct inverse. Allow as a single
(3)	5 is prime $OR \ \sqrt{5} \notin \mathbb{Q}$	D1 1	fraction For a correct property (or equivalent)
(iv)	3 is prime ON \\ \(\sigma \) \(\varphi\)	B1 1 6	For a correct property (or equivalent)
	r	<u>[U</u>	
3	Integrating factor = $e^{\int 2dx} = e^{2x}$	B1	For correct IF
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y \mathrm{e}^{2x} \right) = \mathrm{e}^{-x}$	M1	For $\frac{d}{dx}(y. \text{their IF}) = e^{-3x}$. their IF
	$\Rightarrow y e^{2x} = -e^{-x}(+c)$	A1	For correct integration both sides
	$(0,1) \Rightarrow c = 2$	M1	For substituting (0, 1) into their GS
		A1√	and solving for <i>c</i> For correct <i>c</i> f.t. from their GS
	$\Rightarrow y = -e^{-3x} + 2e^{-2x}$	A1 6	For correct solution
		6	
		U	
4 (i)	(z =) 2, -2, 2i, -2i	M1	For at least 2 roots of the form $k\{1, i\}$ AEF
		A1 2	For correct values

(ii)	$\frac{w}{1-w} = 2, -2, 2i, -2i$	M1	For $\frac{w}{1-w}$ = any one solution from (i)
	$w = \frac{z}{1+z}$	M1	For attempting to solve for <i>w</i> , using any solution or in general
	2 2	B1	For any one of the 4 solutions
	$w = \frac{2}{3}, 2$	A1	For both real solutions
	$w = \frac{4}{5} \pm \frac{2}{5}i$	A1 5	For both complex solutions
	5-51		SR Allow B1 $\sqrt{1}$ and one A1 $\sqrt{1}$ from $k \neq 2$
		7	
5 (i)	$\mathbf{AB} = k \left[\frac{2}{3} \sqrt{3}, 0, -\frac{2}{3} \sqrt{6} \right],$	B1	For any one edge vector of $\triangle ABC$
	BC = $k \left[-\sqrt{3}, 1, 0 \right]$, CA = $k \left[\frac{1}{3} \sqrt{3}, -1, \frac{2}{3} \sqrt{6} \right]$	B1	For any other edge vector of $\triangle ABC$
		M1	For attempting to find vector product of
	$\mathbf{n} = k_1 \left[\frac{2}{3} \sqrt{6}, \frac{2}{3} \sqrt{18}, \frac{2}{3} \sqrt{3} \right] = k_2 \left[1, \sqrt{3}, \frac{1}{2} \sqrt{2} \right]$		any two edges
		M1	For substituting A , B or C into \mathbf{r} . \mathbf{n}
	substitute A, B or $C \implies x + \sqrt{3}y + \frac{1}{2}\sqrt{2}z = \frac{2}{3}\sqrt{3}$	A1 5	For correct equation AG
			SR For verification only allow M1, then
			A1 for 2 points and A1 for the third point
(ii)	Symmetry	B1*	For quoting symmetry or reflection
	in plane OAB or Oxz or $y = 0$	B1	For correct plane
	•	(*dep)2	Allow "in y coordinates" or "in y axis"
			SR For symmetry implied by reference
			to opposite signs in y coordinates of C
			and D, award B1 only
(iii)	$\cos \theta = \frac{\left[1, \sqrt{3}, \frac{1}{2}\sqrt{2} \right] \cdot \left[1, -\sqrt{3}, \frac{1}{2}\sqrt{2} \right]}{\sqrt{1 + 3 + \frac{1}{2}}\sqrt{1 + 3 + \frac{1}{2}}}$	M1	For using scalar product of normal
(111)	$\sqrt{1+3+\frac{1}{2}}\sqrt{1+3+\frac{1}{2}}$		vectors
	V 2 V 2	A1	For correct scalar product
	$=\frac{\left 1-3+\frac{1}{2}\right }{\frac{9}{2}}=\frac{\frac{3}{2}}{\frac{9}{2}}=\frac{1}{3}$	M1	For product of both moduli in
	$=\frac{3}{9}=\frac{9}{9}=\frac{1}{3}$		denominator
		A1 4	For correct answer. Allow $-\frac{1}{3}$
		11	
6 (i)	$\left(m^2 + 16 = 0 \Longrightarrow\right) m = \pm 4i$	M1	For attempt to solve correct auxiliary
U (1)	()		equation (may be implied by correct
			CF)
	$CF = A\cos 4x + B\sin 4x$	A1 2	For correct CF
			(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)
(ii)	dy	M1	For differentiating PI twice,
•	$\frac{\mathrm{d}y}{\mathrm{d}x} = p\sin 4x + 4px\cos 4x$		using product rule
		A1	For correct $\frac{dy}{dx}$
			dx
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 8p\cos 4x - 16px\sin 4x$	A1√	For unsimplified $\frac{d^2y}{dx^2}$. f.t. from $\frac{dy}{dx}$
	$\Rightarrow 8p\cos 4x = 8\cos 4x$	M1	dx^2 dx For substituting into DE
	$\Rightarrow p = 1$	A1	For correct <i>p</i>
	→ p - 1		•
	$\Rightarrow (y =) A\cos 4x + B\sin 4x + x\sin 4x$	B1√ 6	For using $GS = CF + PI$, with 2 arbitrary constants in CF and none in PI

(iii)	$(0,2) \Rightarrow A = 2$	В1 \		For correct A. f.t. from their GS
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4A\sin 4x + 4B\cos 4x + \sin 4x + 4x\cos 4x$	M1		For differentiating their GS
	$x = 0, \ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies B = 0$	M1		For substituting values for <i>x</i> and $\frac{dy}{dx}$
	$\Rightarrow y = 2\cos 4x + x\sin 4x$	A1	4	to find <i>B</i> For stating correct solution CAO including $y =$
		12	2	
7 (i)	$\cos 6\theta = 0 \Rightarrow 6\theta = k \times \frac{1}{2}\pi$	M1		For multiples of $\frac{1}{2}\pi$ seen or implied
	$\Rightarrow \theta = \frac{1}{12} \pi \{1, 3, 5, 7, 9, 11\}$	A1 A1	3	A1 for any 3 correct A1 for the rest, and no extras in $0 < \theta < \pi$
(ii)	METHOD 1			
	$Re(c+is)^{6} = \cos 6\theta = c^{6} - 15c^{4}s^{2} + 15c^{2}s^{4} - s^{6}$	M1		For expanding $(c+is)^6$ at least 4 terms and 2 binomial coefficients needed
		A1		For 4 correct terms
	$\cos 6\theta = c^6 - 15c^4(1 - c^2) + 15c^2(1 - c^2)^2 - (1 - c^2)^3$	M1		For using $s^2 = 1 - c^2$
	$\Rightarrow \cos 6\theta = 32c^6 - 48c^4 + 18c^2 - 1$	A1		For correct expression for $\cos 6\theta$
	$\Rightarrow \cos 6\theta = \left(2c^2 - 1\right)\left(16c^4 - 16c^2 + 1\right)$	A1	5	For correct result AG (may be written down from correct $\cos 6\theta$)
	METHOD 2			·
	$\operatorname{Re}(c+\mathrm{i}s)^3 = \cos 3\theta = \cos^3 \theta - 3\cos\theta\sin^2\theta$	M1		For expanding $(c+is)^3$ at least 2 terms and 1 binomial coefficient needed
	(2	A1		For 2 correct terms
	$\Rightarrow \cos 6\theta = \cos 2\theta \left(\cos^2 2\theta - 3\sin^2 2\theta\right)$	M1		For replacing θ by 2θ
	$\Rightarrow \cos 6\theta = \left(2\cos^2 \theta - 1\right) \left(4\left(2\cos^2 \theta - 1\right)^2 - 3\right)$	A1		For correct expression in $\cos \theta$ (unsimplified)
	$\Rightarrow \cos 6\theta = \left(2c^2 - 1\right)\left(16c^4 - 16c^2 + 1\right)$	A 1		For correct result AG
(iii)	METHOD 1			
	$\cos \theta = 0$	M1		For putting $\cos 6\theta = 0$
	$\Rightarrow 6 \text{ roots of } \cos 6\theta = 0 \text{ satisfy}$ $16c^4 - 16c^2 + 1 = 0 \text{ and } 2c^2 - 1 = 0$	A1		For association of roots with quartic an quadratic
	But $\theta = \frac{1}{4}\pi, \frac{3}{4}\pi$ satisfy $2c^2 - 1 = 0$	B1		For correct association of roots with quadratic
	EITHER Product of 4 roots OR $c = \pm \frac{1}{2} \sqrt{2 \pm \sqrt{3}}$	M1		For using product of 4 roots OR for solving quartic
	\Rightarrow cos $\frac{1}{12}\pi$ cos $\frac{5}{12}\pi$ cos $\frac{7}{12}\pi$ cos $\frac{11}{12}\pi = \frac{1}{16}$	A 1	5	For correct value (may follow A0 and

	A CENTAGE A		
	METHOD 2	3.61	
	$\cos \theta = 0$	M1	For putting $\cos \theta = 0$
	\Rightarrow 6 roots of $\cos 6\theta = 0$ satisfy	A1	For association of roots with sextic
	$32c^6 - 48c^4 + 18c^2 - 1 = 0$ Product of 6 roots \Rightarrow	M1	For using product of 6 roots
	$\cos \frac{1}{12}\pi \cdot \frac{1}{\sqrt{2}} \cdot \cos \frac{5}{12}\pi \cos \frac{7}{12}\pi \cdot \frac{-1}{\sqrt{2}} \cdot \cos \frac{11}{12}\pi = -\frac{1}{32}$	B1	For using $\cos\left\{\frac{3}{12}\pi, \frac{9}{12}\pi\right\} = \left\{\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\}$
	$\cos \frac{1}{12}\pi \cos \frac{5}{12}\pi \cos \frac{7}{12}\pi \cos \frac{11}{12}\pi = \frac{1}{16}$	A1	For correct value $[12^{11}, 12^{11}]$
	12 12 12 16		1 of coffeet value
		13	
(i)	$g(x) = \frac{1}{1} = \frac{2-2x}{1-x} = \frac{1-x}{1-x}$	M1	For use of $ff(x)$
	$g(x) = \frac{1}{2 - 2 \cdot \frac{1}{2 - 2x}} = \frac{2 - 2x}{2 - 4x} = \frac{1 - x}{1 - 2x}$	A1	For correct expression AG
	$1 - \frac{1 - x}{1 - 2x} - x$	M1	For use of $gg(x)$
	$gg(x) = \frac{1 - \frac{1 - x}{1 - 2x}}{1 - 2 \cdot \frac{1 - x}{1 - 2x}} = \frac{-x}{-1} = x$		For correct expression \mathbf{AG}
	$1-2\lambda$	D1	
(ii)	Order of $f = 4$	B1 B1 2	For correct order For correct order
(iii)	order of $g = 2$ METHOD 1	B1 2	For correct order
(111)			
	$y = \frac{1}{2 - 2x} \Longrightarrow x = \frac{2y - 1}{2y}$	M1	For attempt to find inverse
	\Rightarrow f ⁻¹ (x) = h(x) = $\frac{2x-1}{2x}$ OR 1 - $\frac{1}{2x}$	A1 2	For correct expression
			<u> </u>
	METHOD 2		
	$f^{-1} = f^3 = f g \text{ or } g f$	M1	For use of $f g(x)$ or $g f(x)$
	$f g(x) = h(x) = \frac{1}{2 - 2\left(\frac{1 - x}{1 - 2x}\right)} = \frac{1 - 2x}{-2x}$	A1	For correct expression
(iv)	$(1-2\lambda)$		
(17)	e f g h		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	For correct row 1 and column 1
	f f g h e	A1	For e, f, g, h in a latin square
	g g h e f	A1	For correct diagonal e - g - e - g
	h h e f g	A1 4	For correct table
		12	

	Direction of $l_1 = k[7, 0, -10]$ Direction of $l_2 = k[1, 3, -1]$	B1	For both directions
	EITHER $\mathbf{n} = [7, 0, -10] \times [1, 3, -1]$	M1	For finding vector product of directions of
	$OR \begin{cases} [x, y, z] \cdot [7, 0, -10] = 0 \implies 7x - 10z = 0 \\ [x, y, z] \cdot [1, 3, -1] = 0 \implies x + 3y - z = 0 \end{cases}$		l_1 and l_2 OR for using 2 scalar products and obtaining equations
	\Rightarrow n = $k[10, -1, 7]$	A1	For correct n
****	METHOD 1		
	Vector $(\mathbf{a} - \mathbf{b})$ from l_1 to $l_2 = \pm [4, 6, -10]$		
	$OR \pm [-4, 3, 1] OR \pm [3, 3, -9] OR \pm [-3, 6, 0]$	B1	For a correct vector
	$d = \frac{ (\mathbf{a} - \mathbf{b}) \cdot \mathbf{n} }{ \mathbf{n} } = \frac{36}{\sqrt{150}}$	M1*	For finding $(a-b) \cdot n$
	$a = \frac{ \mathbf{n} }{ \mathbf{n} } = \frac{1}{\sqrt{150}}$	M1 (*dep)	For $ \mathbf{n} $ in denominator OR for using $\hat{\mathbf{n}}$
	$d = \frac{6}{5}\sqrt{6} \approx 2.94$	A1 7	For correct distance AEF
****	METHOD 2 Planes containing l_1 and l_2 perp. to n	M1*	For finding planes and $p_1 - p_2$ seen
	are $\mathbf{r} \cdot [10, -1, 7] = p_1 = 70, \mathbf{r} \cdot [10, -1, 7] = p_2 = 34$	B1	For $p_1 = 70k$ and $p_2 = 34k$
	$\Rightarrow d = \frac{ 70 - 34 }{\sqrt{150}} = \frac{36}{\sqrt{150}} = \frac{6}{5}\sqrt{6} \approx 2.94$	M1 (*dep)	For $ \mathbf{n} $ in denominator OR for using $\hat{\mathbf{n}}$
		A1	For correct distance AEF
	METHOD 3	D1	
	$\mathbf{r}_1 = [7\lambda, 0, 10 - 10\lambda] \ OR \ [7 + 7\lambda, 0, -10\lambda]$	B1	For correct points on l_1 and l_2
	$\mathbf{r}_2 = [4 + \mu, 6 + 3\mu, -\mu] \ OR \ [3 + \mu, 3 + 3\mu, 1 - \mu]$		using different parameters
	$7\lambda + 10\alpha - \mu = \begin{vmatrix} 4 & -3 & 3 & -4 \\ -\alpha - 3\mu & = & 6 & 6 & 3 & 3 \\ -10\lambda + 7\alpha + \mu & = & -10 & 0 & -9 & 1 \end{vmatrix}$	M1*	For setting up 3 linear equations from $\mathbf{r}_1 + \alpha \mathbf{n} = \mathbf{r}_2$ and solving for α
	$\Rightarrow \alpha = -\frac{6}{25}$		
	$ \mathbf{n} = \sqrt{150}$	M1 (*dep)	For $ \mathbf{n} $ seen multiplying α
	$\Rightarrow d = \frac{6}{25}\sqrt{150} = \frac{6}{5}\sqrt{6} \approx 2.94$	A1	For correct distance AEF
······································		7	

2 ((i)	$ar = r^5 a \implies r a r = r^6 a$	M1		Pre-multiply $a r = r^5 a$ by r
		$r^6 = e \implies r a r = a$	A1	2	Use $r^6 = e$ and obtain answer AG
((ii)	METHOD 1			
		For $n = 1$, $rar = a$ OR For $n = 0$, $r^0 a r^0 = a$	B1		For stating true for $n = 1$ OR for $n = 0$
		Assume $r^k a r^k = a$			
		EITHER Assumption $\Rightarrow r^{k+1}ar^{k+1} = rar = a$	M1		For attempt to prove true for $k + 1$
		$OR \ r^{k+1}ar^{k+1} = r.r^k ar^k.r = rar = a$			-
		$OR r^{k+1}ar^{k+1} = r^k . rar. r^k = r^k ar^k = a$	A 1		For obtaining correct form
		Hence true for all $n \in \mathbb{Z}^+$	A1	4	For statement of induction conclusion
		METHOD 2			
		$r^2ar^2 = r.rar.r = rar = a$, similarly for	M1		For attempt to prove for $n = 2, 3$
		$r^3ar^3=a$			
		$r^4 a r^4 = r \cdot r^3 a r^3 \cdot r = r a r = a$,	A1		For proving true for $n = 2, 3, 4, 5$
		similarly for $r^5 a r^5 = a$			
		$r^6 a r^6 = e a e = a$	B1		For showing true for $n = 6$
		For $n > 6$, $r^n = r^{n \mod 6}$, hence true for all $n \in \mathbb{Z}^+$	A1		For using $n \mod 6$ and correct conclusion
		METHOD 3			
		$r^n a r^n = r^{n-1}.rar.r^{n-1}$	M1		Starting from n , for attempt to prove true for $n-1$
		$OR \ r^n a r^n = r^n . r^5 a . r^{n-1} = r^{n+5} a r^{n-1}$			n-1
		$= r^{n-1}a r^{n-1}$	A1		For proving true for $n-1$
		$= r^{n-2}a r^{n-2} = \dots$	A1		For continuation from $n-2$ downwards
		= rar = a	B1		For final use of $rar = a$
					SR can be done in reverse
		METHOD 4			
		$ar = r^5 a \Rightarrow ar^2 = r^5 ar = r^{10} a$ etc.	M1		For attempt to derive $a r^n = r^{5n} a$
		$\Rightarrow a r^n = r^{5n}a$	A1		For correct equation
		$\Rightarrow r^n a r^n = r^{6n} a$	В1		SR may be stated without proof For pre-multiplication by r^n
		$\Rightarrow r \ ar = r \ a$ $= ea = a$			For obtaining a ($r^6 = e$ may be implied)
		- eu - u	A1		For obtaining a ($r = e$ may be implied)
			6		

(i)	$w^2 = \cos\frac{4}{5}\pi + i\sin\frac{4}{5}\pi$
	$w^3 = \cos\frac{6}{5}\pi + i\sin\frac{6}{5}\pi$
	$w^* = \cos\frac{2}{5}\pi - i\sin\frac{2}{5}\pi$
	$=\cos\frac{8}{5}\pi + i\sin\frac{8}{5}\pi$

3

Allow $\operatorname{cis} \frac{k}{5}\pi$ and $e^{\frac{k}{5}\pi i}$ throughout

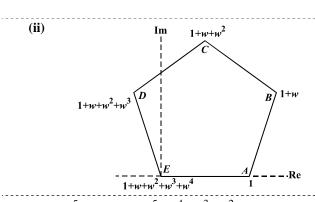
For correct value **B**1

B1 For correct value

For w^* seen or implied **B**1

Β1 For correct value

> **SR** For exponential form with i missing, award B0 first time, allow others



For 1+w in approximately correct position B1*

B1 For $AB \approx BC \approx CD$ (*dep)

For BC, CD equally inclined to Im axis Β1

(*dep) B1 For *E* at the origin

Allow points joined by arcs, or not joined Labels not essential

For correct equation AEF (in any variable) Β1 Allow factorised forms using w, exp or trig

 $z^{5}-1=0$ OR $z^{5}+z^{4}+z^{3}+z^{2}+z=0$

9

4 (i) $y = xz \Rightarrow \frac{dy}{dx} = z + x \frac{dz}{dx}$

 $\Rightarrow xz + x^2 \frac{dz}{dx} - xz = x \cos z \Rightarrow x \frac{dz}{dx} = \cos z$

 $\Rightarrow \int \sec z \, dz = \int \frac{1}{x} dx$

 $\Rightarrow \ln(\sec z + \tan z) = \ln kx$

 $OR \ln \tan \left(\frac{1}{2}z + \frac{1}{4}\pi\right) = \ln kx$

 $\Rightarrow \sec\left(\frac{y}{x}\right) + \tan\left(\frac{y}{x}\right) = kx$ $OR \ \tan\left(\frac{y}{2x} + \frac{1}{4}\pi\right) = kx$

Β1 For correct differentiation of substitution

M1For substituting into DE

A1 For DE in variables separable form

For attempt at integration M1 to In form on LHS

Α1 For correct integration (*k* not required here)

For correct solution **A**1

AEF including RHS = $e^{(\ln x)+c}$

(ii) $(4, \pi) \Rightarrow \sec \frac{1}{4}\pi + \tan \frac{1}{4}\pi = 4k$

 $OR \tan\left(\frac{1}{8}\pi + \frac{1}{4}\pi\right) = 4k$

 \Rightarrow sec $\left(\frac{y}{r}\right)$ + tan $\left(\frac{y}{r}\right)$ = $\frac{1}{4}\left(1+\sqrt{2}\right)x$

 $OR \tan\left(\frac{y}{2x} + \frac{1}{4}\pi\right) = \left(\frac{1}{4}\tan\frac{3}{8}\pi\right)x \text{ or } \frac{1}{4}\left(1 + \sqrt{2}\right)x$

M1 For substituting $(4, \pi)$

into their solution (with k)

For correct solution AEF A1 2 Allow decimal equivalent 0.60355 x

Allow $e^{\ln x}$ for x

8

5 (i)	$C + iS = 1 + \frac{1}{2}e^{i\theta} + \frac{1}{4}e^{2i\theta} + \frac{1}{8}e^{3i\theta} + \dots$	M1	For using $\cos n\theta + i \sin n\theta = e^{in\theta}$ at least once for $n \ge 2$
		A1	For correct series
	$=\frac{1}{1-\frac{1}{2}e^{i\theta}}=\frac{2}{2-e^{i\theta}}$	M1 A1 4	For using sum of infinite GP For correct expression AG SR For omission of 1st stage award up to
(ii)	-iA)		M0 A0 M1 A1 OEW
(II)	$C + i S = \frac{2(2 - e^{-i\theta})}{(2 - e^{i\theta})(2 - e^{-i\theta})}$	M1	For multiplying top and bottom by complex conjugate
	$= \frac{4 - 2e^{-i\theta}}{4 - 2(e^{i\theta} + e^{-i\theta}) + 1} = \frac{4 - 2\cos\theta + 2i\sin\theta}{4 - 4\cos\theta + 1}$	M1	For reverting to $\cos\theta$ and $\sin\theta$ and equating Re <i>OR</i> Im parts
	$4-2\cos\theta$ $2\sin\theta$	A1	For correct expression for <i>C</i> AG
	$\Rightarrow C = \frac{4 - 2\cos\theta}{5 - 4\cos\theta}, S = \frac{2\sin\theta}{5 - 4\cos\theta}$	A1 4	For correct expression for S
		8	
6 (i)	Aux. equation $m^2 + 2m + 17 = 0$	M1	For attempting to solve
	$\Rightarrow m = -1 \pm 4i$	A1	correct auxiliary equation For correct roots
	$CF (y =) e^{-x} (A\cos 4x + B\sin 4x)$	A1	For correct CF (allow $A \frac{\cos}{\sin} (4x + \varepsilon)$)
	PI $(y =) px + q \implies 2p + 17(px + q) = 17x + 36$	M1	(trig terms required, not $e^{\pm 4ix}$) f.t. from their m with 2 arbitrary constants For stating and substituting PI of correct form
	$\Rightarrow p=1$	A1	For correct value of <i>p</i>
	and $q = 2$	A1	For correct value of q
	GS $y = e^{-x} (A \cos 4x + B \sin 4x) + x + 2$	B1√ 7	For GS. f.t. from their CF+PI with 2 arbitrary constants in CF and none in PI. Requires $y = 0$.
(ii)	$x \gg 0 \Rightarrow e^{-x} \to 0$ OR very small	B1	For correct statement. Allow graph
	$\Rightarrow y = x + 2 \text{ approximately}$	B1√ 2	For correct equation
			Allow \approx , \rightarrow and in words
			Allow relevant f.t. from linear part of GS
		9	

7 (i)	$(1, 3, 5)$ and $(5, 2, 5) \Rightarrow \pm [4, -1, 0]$ in Π	M1	For finding a vector in Π
	$\mathbf{n} = [2, -2, 3] \times [4, -1, 0] = k[1, 4, 2]$	M1	For finding vector product of direction vectors of l and a line in Π
		A1	For correct n
	$\Rightarrow \mathbf{r} \cdot [1, 4, 2] = 23$	A1 4	For correct equation. Allow multiples
(ii)	METHOD 1		
	Perpendicular to Π through $(-7, -3, 0)$ meets Π	M1	For using perpendicular from point on l to Π
			Award mark for $k\mathbf{n}$ used
	where $(-7+k)+4(-3+4k)+2(2k)=23$	M1	For substituting parametric line coords into Π
	$\Rightarrow k = 2 \Rightarrow d = 2\sqrt{1^2 + 4^2 + 2^2} = 2\sqrt{21} \approx 9.165$	M1 A1 4	For normalising the n used in this part For correct distance AEF
	METHOD 2		
	$\Pi \text{ is } x + 4y + 2z = 23$	M1	For attempt to use formula for perpendicular distance
	$\Rightarrow d = \frac{\left (-7) + 4(-3) + 2(0) - 23 \right }{\sqrt{1^2 + 4^2 + 2^2}} = 2\sqrt{21} \approx 9.165$	M1	For substituting a point on <i>l</i> into plane equation
	$\sqrt{1^2 + 4^2 + 2^2}$	M1 A1	For normalising the n used in this part For correct distance AEF
	METHOD 3	111	
	$\mathbf{m} = [1, 3, 5] - [-7, -3, 0] = (\pm)[8, 6, 5]$	M1	For finding a vector from l to Π
	$OR = [5, 2, 5] - [-7, -3, 0] = (\pm)[12, 5, 5]$		-
		M1	For finding m . n
	$\Rightarrow d = \frac{\mathbf{m} \cdot [1, 4, 2]}{\sqrt{1^2 + 4^2 + 2^2}} = \frac{42}{\sqrt{21}} = 2\sqrt{21} \approx 9.165$	M 1	For normalising the n used in this part
	VI T4 T2	A1	For correct distance AEF
	METHOD 4		As Method 1, using parametric form of Π
	[-7, -3, 0] + k[1, 4, 2] = [1, 3, 5] + s[2, -2, 3] + t[4, -1]	l, 0] M1	For using perpendicular from point on l to Π
			Award mark for $k\mathbf{n}$ used
		M1	For setting up and solving 3 equations
	$\Rightarrow d = 2\sqrt{1^2 + 4^2 + 2^2} = 2\sqrt{21} \approx 9.165$	M1	For normalising the n used in this part
		A1	For correct distance AEF
	METHOD 5		
	$d_1 = \frac{23}{\sqrt{1^2 + 4^2 + 2^2}} = \frac{23}{\sqrt{21}}$	M1	For attempt to find distance from O to Π OR from O to parallel plane containing l
	$d_2 = \frac{[-7, -3, 0] \cdot [1, 4, 2]}{\sqrt{1^2 + 4^2 + 2^2}} = \frac{-19}{\sqrt{21}}$	M1	For normalising the n used in this part
	VI 17 12	M1	For finding d. d.
	$\Rightarrow d_1 - d_2 = d = \frac{23 - (-19)}{\sqrt{21}} = 2\sqrt{21} \approx 9.165$	A1	For finding $d_1 - d_2$ For correct distance AEF
(iii)	$\sqrt{21}$ $(-7, -3, 0) + k(1, 4, 2)$	M1	State or imply coordinates of a point on the
	Use $k = 4$	M1	reflected line State or imply 2 × distance from (ii)
	03C K - 4	1411	Allow $k = \pm 4$ OR $\pm 4\sqrt{21}$ f.t. from (ii)
	$\mathbf{b} = [2, -2, 3]$	B1	For stating correct direction $k = \pm 4$ OK $\pm 4\sqrt{21}$ Lt. Holli (II)
	$\mathbf{a} = [-3, 13, 8]$	A1 4	For correct point seen in equation $\mathbf{r} = \mathbf{a} + t\mathbf{b}$
	$\mathbf{r} = [-3, 13, 8] + t[2, -2, 3]$	-	AEF in this form
	[~,, ~] ·· [-, -, ~]		

12

8 (i)	$\{A,D\}$ OR $\{A,E\}$ OR $\{A,F\}$	B1 1	For stating any one subgroup
(ii)	A is the identity	B1 1	For identifying A as the identity
(11)	5 is not a factor of 6	B1 2	For reference to factors of 6
	OR elements can be only of order 1, 2, 3, 6	2	1 02 1010201100 (0 11101020 01 0
(iii)		M1	For finding <i>BE</i> and <i>EB</i> AND using $\omega^3 = 1$
	$(0 \ 1) \ (0 \ \omega) \ (0 \ \omega)$	A1	For correct BE (D or matrix)
	$BE = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = D$, $EB = \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix} = F$	A1	For correct EB (F or matrix)
	$D \ or \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, F \ or \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix} \in M$	A1 4	For justifying closure
	⇒ closure property satisfied		
(iv)	$B^{-1} = \frac{1}{1} \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix} = C$	M1	For correct method of finding either inverse
	$1 \left(\begin{array}{cc} 0 & \omega \end{array} \right)^{-1}$	A1	For correct $B^{-1} = C$ Allow $\begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix}$
	$E^{-1} = \frac{1}{-1} \begin{pmatrix} 0 & -\omega^2 \\ -\omega & 0 \end{pmatrix} = E$	A1 3	For correct $E^{-1} = E$ Allow $\begin{pmatrix} 0 & \omega^2 \\ \omega & 0 \end{pmatrix}$
(v)	METHOD 1	P.1	T
	M is not commutative	B1	For justification of <i>M</i> being not
	e.g. from $BE \neq EB$ in part (iii) N is commutative (as \times mod 9 is commutative)	B1	commutative For statement that <i>N</i> is commutative
	\Rightarrow <i>M</i> and <i>N</i> not isomorphic METHOD 2	B1# 3	For correct conclusion
	Elements of M have orders 1, 3, 3, 2, 2, 2	B1*	For all orders of one group correct
	Elements of <i>N</i> have orders 1, 6, 3, 2, 3, 6	B1 (*dep)	For sufficient orders of the other group correct
	Different orders OR self-inverse elements $\Rightarrow M$ and N not isomorphic	B1#	For correct conclusion SR Award up to B1 B1 B1 if the self- inverse elements are sufficiently well identified for the groups to be non- isomorphic
	METHOD 3		
	M has no generator	B1	For all orders of M shown correctly
	since there is no element of order 6		
	N has 2 OR 5 as a generator	B1	For stating that <i>N</i> has generator 2 <i>OR</i> 5
	\Rightarrow M and N not isomorphic	B1#	For correct conclusion
	METHOD 4 M A B C D E F A A B C D E F B B C A F D E C C A B E F D D D E F A B C E E F D C A B F F D E B C A	B1*	For stating correctly all 6 squared elements of one group
	N 1 2 4 8 7 5 5 1 1 2 4 8 7 5 5 2 2 4 8 7 5 1 4 4 8 7 5 1 2 4 8 7 5 1 2 4 8 5 5 1 2 4 8 7 7 5 1 2 4 8 7 7 5 1 2 4 8 7 7 7 5 1 2 4 8 7 7 7 7 7 7 7 7 7	B1 (*dep)	For stating correctly sufficient squared elements of the other group
	3 3 1 2 + 0 7		
	$\Rightarrow M$ and N not isomorphic	B1#	For correct conclusion
	'	B1#	For correct conclusion # In all Methods, the last B1 is dependent of at least one preceding B1

1 (i)	Integrating factor. $e^{\int x dx} = e^{\frac{1}{2}x^2}$	B1	For correct IF
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y \mathrm{e}^{\frac{1}{2}x^2} \right) = x \mathrm{e}^{x^2}$	M1	For $\frac{d}{dx}(y)$. their IF = $x e^{\frac{1}{2}x^2}$. their IF
	$\Rightarrow y e^{\frac{1}{2}x^2} = \frac{1}{2}e^{x^2} (+c)$	A1	For correct integration both sides
	$\Rightarrow y = e^{-\frac{1}{2}x^2} \left(\frac{1}{2} e^{x^2} + c \right) = \frac{1}{2} e^{\frac{1}{2}x^2} + c e^{-\frac{1}{2}x^2}$	A1 4	For correct solution AEF as $y = f(x)$
(ii)	$(0, 1) \Rightarrow c = \frac{1}{2}$	M1	For substituting (0, 1) into their GS, solving for <i>c</i> and obtaining a solution of the DE For correct solution AEF
	$\Rightarrow y = \frac{1}{2} \left(e^{\frac{1}{2}x^2} + e^{-\frac{1}{2}x^2} \right)$	A1 2	Allow $y = \cosh\left(\frac{1}{2}x^2\right)$
		6	(2)
2 (i)	$\mathbf{n} = [2, 1, -3] \times [-1, 2, 4]$ = $[10, -5, 5] = k[2, -1, 1]$	M1 A1	For using × of direction vectors For correct n
	$(1,3,4) \Rightarrow 2x - y + z = 3$	A1 3	For substituting (1, 3, 4) and obtaining AG (Verification only M0)
(ii)	METHOD 1 distance = $\frac{21-3}{ \mathbf{n} } OR \frac{ [1, 3, 4] \cdot [2, -1, 1] - 21 }{ \mathbf{n} }$	M1	For $21 - 3$ OR $[1, 3, 4] \cdot [2, -1, 1] - 21$ OR $ ([1, 3, 4] - [a, b, c]) \cdot [2, -1, 1] $ soi
	$OR \frac{ \mathbf{n} }{ ([1, 3, 4] - [a, b, c]) \cdot [2, -1, 1] } \text{ where } (a, b, c)$ $ \mathbf{n} \text{ is on } q$	B1	For $ \mathbf{n} = \sqrt{6}$ soi
	$=\frac{18}{\sqrt{6}}=3\sqrt{6}$	A1 3	For correct distance AEF
	METHOD 2 [1+2t, 3-t, 4+t] on $q\Rightarrow 2(1+2t)-(3-t)+(4+t)=21 \Rightarrow t=3$	M1 B1	For forming and solving an equation in t For $ \mathbf{n} = \sqrt{6}$ soi
	\Rightarrow distance = $3 \mathbf{n} = 3\sqrt{6}$	A1	For correct distance AEF
	METHOD 3 As Method 2 to $t = 3 \implies (7, 0, 7)$ on q	M1*	For finding point where normal meets q
	distance from $(1, 3, 4)$ = $\sqrt{(7-1)^2 + (0-3)^2 + (7-4)^2} = \sqrt{54} = 3\sqrt{6}$	M1 (*dep)	For finding distance from (1, 3, 4)
	$= \chi(7-1) + (0-3) + (7-4) = \chi_{34} = 3\chi_{0}$	A1 6	For correct distance AEF
3 (i)	$\sin\theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$	B1	z or $e^{i\theta}$ may be used throughout For correct expression for $\sin \theta$ soi
	$\sin^4 \theta = \frac{1}{16} \left(z^4 - 4z^2 + 6 - 4z^{-2} + z^{-4} \right)$	M1	For expanding $(e^{i\theta} - e^{-i\theta})^4$ (with at least
	4 . 1 (2.51	3 terms and 1 binomial coefficient)
	$\Rightarrow \sin^4 \theta = \frac{1}{16} (2\cos 4\theta - 8\cos 2\theta + 6)$	M1	For grouping terms and using multiple angles
(**)	$\Rightarrow \sin^4 \theta = \frac{1}{8} (\cos 4\theta - 4\cos 2\theta + 3)$	A1 4	For answer obtained correctly AG
(ii)	$\int_0^{\frac{1}{6}\pi} \sin^4 \theta d\theta = \frac{1}{8} \left[\frac{1}{4} \sin 4\theta - 2 \sin 2\theta + 3\theta \right]_0^{\frac{1}{6}\pi}$	M1 A1	For integrating (i) to $A \sin 4\theta + B \sin 2\theta + C\theta$ For correct integration
	$= \frac{1}{8} \left(\frac{1}{8} \sqrt{3} - \sqrt{3} + \frac{1}{2} \pi \right) = \frac{1}{64} \left(4\pi - 7\sqrt{3} \right)$	M1	For completing integration and substituting limits
		A1 4 8	For correct answer AEF (exact)
		1	

4 (• 1	2			
4 (i	1)	EITHER $1 + \omega + \omega^2$	M1 A1	2	For result shown by any correct method AG
	-	= sum of roots of $(z^3 - 1 = 0) = 0$	ΑI	4	
		$OR \omega^3 = 1 \Rightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$			
	_	$\Rightarrow 1 + \omega + \omega^2 = 0 \text{ (for } \omega \neq 1)$			
		OR sum of G.P.			
	_	$1 + \omega + \omega^2 = \frac{1 - \omega^3}{1 - \omega} \left(= \frac{0}{1 - \omega} \right) = 0$			
	_	OR shown on Argand diagram or explained in terms of vectors			
		OR (5)			
		$1 + \operatorname{cis} \frac{2}{3} \pi + \operatorname{cis} \frac{4}{3} \pi = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i \right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = 0$			
(i	ii)	Multiplication by $\omega \Rightarrow$ rotation through $\frac{2}{3}\pi$	В1		For correct interpretation of \times by ω
		J			(allow 120° and omission of, or error in, \circlearrowleft)
		$z_1 - z_3 = \overrightarrow{CA} , z_3 - z_2 = \overrightarrow{BC}$	B1		For identification of vectors soi (ignore direction errors)
		\overrightarrow{BC} rotates through $\frac{2}{3}\pi$ to direction of \overrightarrow{CA}	M1		For linking <i>BC</i> and <i>CA</i> by rotation of $\frac{2}{3}\pi$ <i>OR</i> ω
		$\triangle ABC$ has $BC = CA$, hence result	A1	4	For stating equal magnitudes \Rightarrow AG
(i	iii)	$(\mathbf{ii}) \Rightarrow z_1 + \omega z_2 - (1 + \omega)z_3 = 0$	M1		For using $1 + \omega + \omega^2 = 0$ in (ii)
		$1 + \omega + \omega^2 = 0 \Rightarrow z_1 + \omega z_2 + \omega^2 z_3 = 0$	A 1	2	For obtaining AG
			8		
5 (i	i)	Aux. equation $3m^2 + 5m - 2 (= 0)$	M1		For correct auxiliary equation seen and solution attempted
		$\Rightarrow m = \frac{1}{3}, -2$	A1		For correct roots
		CF $(y =) A e^{\frac{1}{3}x} + B e^{-2x}$	A1v		For correct CF
		PI $(y =) px + q \Rightarrow 5p - 2(px + q) = -2x + 13$	M1		f.t. from <i>m</i> with 2 arbitrary constants For stating and substituting PI of correct form
		$\Rightarrow p = 1, q = -4$	A1	A1	For correct value of p , and of q
		GS $(y =) A e^{\frac{1}{3}x} + Be^{-2x} + x - 4$	B1v	7	For GS f.t. from their CF+PI with 2 arbitrary constants in CF and none in PI
(i	ii)	$\left(0, -\frac{7}{2}\right) \Rightarrow A + B = \frac{1}{2}$	M1		For substituting $\left(0, -\frac{7}{2}\right)$ in their GS
		$y' = \frac{1}{3}Ae^{\frac{1}{3}x} - 2Be^{-2x} + 1$, $(0, 0) \Rightarrow A - 6B = -3$	M1		and obtaining an equation in A and B For finding y' , substituting $(0,0)$ and obtaining an equation in A and B
			M1		For solving their 2 equations in <i>A</i> and <i>B</i>
		$\Rightarrow A = 0, \ B = \frac{1}{2}$	A1		For correct A and B CAO
		$\Rightarrow (y =) \frac{1}{2} e^{-2x} + x - 4$	B1v	5	For correct solution f.t. with their A and B in their GS
(i	iii)	$x \text{ large} \Rightarrow (y =) x - 4$	B1√	1	For correct equation or function (allow \approx and \rightarrow) www
					f.t. from (ii) if valid
			13	3	

6 (i) $a^4 = r^6 = e \Rightarrow a$ has order 4, a^2 has order 2 M1 For considering powers of a	y
(ii) $G ext{ order } 4$	y
(ii) G order 4 Order of element 1 2 (4) Number of elements 1 3 (0) H order 6 Order of element 1 2 3 (6) Number of element 1 3 2 (0) G and H are the only non-cyclic groups of order which divides 12 Q has 1 element of order 2, G and H have 3, so no non-cyclic subgroups in Q M1 For top line in either table Allow inclusion of 4 and 6 respectivel (and other orders if 0 appears below) A1 For order 4 table For order 6 table For stating that only G and H need be considered AEF For argument completed by elements AG SR Allow equivalent arguments for B	
Order of element 1 2 (4) Number of elements 1 3 (0) Horder 6 Order of element 1 2 3 (6) Number of elements 1 3 2 (0) G and H are the only non-cyclic groups of order which divides 12 Q has 1 element of order 2, G and H have 3, so no non-cyclic subgroups in Q Allow inclusion of 4 and 6 respectivel (and other orders if 0 appears below) For order 4 table For order 6 table For stating that only G and H need be considered AEF For argument completed by elements AG SR Allow equivalent arguments for B	
Number of elements 1 3 (0) H order 6 Order of element 1 2 3 (6) Number of elements 1 3 2 (0) G and H are the only non-cyclic groups of order which divides 12 Q has 1 element of order 2, G and H have 3, so no non-cyclic subgroups in Q (and other orders if 0 appears below) A1 For order 4 table For order 6 table For stating that only G and H need be considered AEF B1 For argument completed by elements AG SR Allow equivalent arguments for B	
Horder 6 Order of element 1 2 3 (6) Number of elements 1 3 2 (0) G and H are the only non-cyclic groups of order which divides 12 Q has 1 element of order 2, G and H have 3, so no non-cyclic subgroups in Q Horder 6 A1 A1 For order 4 table For order 6 table For stating that only G and H need be considered AEF B1 For argument completed by elements AG SR Allow equivalent arguments for B	of order 2
Order of element 1 2 3 (6) Number of elements 1 3 2 (0) G and H are the only non-cyclic groups of order which divides 12 Q has 1 element of order 2, G and H have 3, so no non-cyclic subgroups in Q A1 For order 6 table For stating that only G and H need be considered AEF B1 For argument completed by elements AG SR Allow equivalent arguments for B	of order 2
Rumber of elements 1 3 2 (0) G and H are the only non-cyclic groups of order which divides 12 Q has 1 element of order 2, G and H have 3, so no non-cyclic subgroups in Q B1 For stating that only G and H need be considered AEF B1 For argument completed by elements AG SR Allow equivalent arguments for B	of order 2
which divides 12 Q has 1 element of order 2, G and H have 3, so no non-cyclic subgroups in Q B1 5 For argument completed by elements AG SR Allow equivalent arguments for B	of order 2
Q has 1 element of order 2, G and H have 3, so no non-cyclic subgroups in Q B1 5 For argument completed by elements AG SR Allow equivalent arguments for B	of order 2
SR Allow equivalent arguments for B	
	1 D1
	<u> </u>
7 (i) $[1, 1, -2] \times [1, -1, 3] = (\pm)[1, -5, -2]$ M1 For using \times of direction vectors A1 For correct direction	
A1 For correct direction $[1,-1,3] \times [1,5,-12] = (\pm)[-3,15,6]$ M1 For using \times of direction vectors	
A1 For correct direction	
$[-3, 15, 6] = k[1, -5, -2] \Rightarrow \text{parallel}$ A1 5 For argument completed AG	
(k = -3 not essential)	
(ii) Line of intersection is parallel to <i>l</i> and <i>m</i> B1 1 For correct statement (iii) METHOD 1	
$\begin{cases} x + y - 2z = 5 \\ x - y + 3z = 6 \end{cases} \text{ e.g. } z = 0 \implies \left(\frac{11}{2}, -\frac{1}{2}, 0\right) \text{ on } l $ $\text{M1} \qquad \text{For attempt to find points on 2 lines} $ $\text{For a correct point on one line}$	
$\begin{cases} x + y - 2z = 5 \\ x + 5y - 12z = 12 \end{cases} \text{ e.g. } z = 0 \implies \left(\frac{13}{4}, \frac{7}{4}, 0\right) \text{ on } l_3$	
Different points \Rightarrow no common line of intersection A1 4 For correct answer	
METHOD 2	
$\begin{cases} x + y - 2z = 5 \\ x - y + 3z = 6 \end{cases} \text{ e.g. } \Rightarrow z = 11 - 2x, \ y = 27 - 5x $ $M1 \qquad \text{For finding (e.g.) } y \text{ and } z \text{ in terms of } x \text{ of } z of $	
x-y+3z=6 A1 For correct expressions OR equations	
LHS of eqn 3 = A1 For obtaining a contradiction from 3rd	equation
$x + (135 - 25x) - (132 - 24x) = 3 \neq 12$	•
⇒ no common line of intersection A1 For correct answer	
METHOD 3	
LHS $\Pi_3 = 3\Pi_1 - 2\Pi_2$ M2 For attempt to link 3 equations	
RHS $3\times5-2\times6=3\neq12$ A1 For obtaining a contradiction	
⇒ no common line of intersection A1 For correct answer	
SR Variations on all methods may gain full credit SR f.t. may be allowed from relevant	
10	working

8 (i)	((a,b)*(c,d))*(e,f) = (ac,ad+b)*(e,f)	M1	For 3 distinct elements bracketed and attempt to expand
	=(ace, acf + ad + b)	A1	For correct expression
	(a,b)*((c,d)*(e,f)) = (a,b)*(ce,cf+d)		
	=(ace, acf + ad + b)	A1 3	For correct expression again
(ii)	(a,b)*(1,1) = (a,a+b), (1,1)*(a,b) = (a,b+1)	M1	For combining both ways round
	$a+b=b+1 \implies a=1$	M1	For equating components
	\Rightarrow (1, b) \forall b		(allow from incorrect pairs)
		A1 3	For correct elements AEF
(iii)	(mp, mq + n) OR (pm, pn + q) = (1, 0)	M1	For either element on LHS
	$\Rightarrow (p,q) = \left(\frac{1}{m}, -\frac{n}{m}\right)$	A1 2	For correct inverse
(iv)	$(a,b)*(a,b) = (a^2, ab+b) = (1,0)$ $OR(a,b) = \left(\frac{1}{a}, -\frac{b}{a}\right) \implies a^2 = 1, ab = -b$	M1	For attempt to find self-inverses
	\Rightarrow self-inverse elements (1, 0) and (-1, b) \forall b	B1 A1 3	For $(1, 0)$. For $(-1, b)$ AEF
(v)	$(0, y)$ has no inverse for any $y \Rightarrow$ not a group	B1 1	For stating any one element with no inverse. Allow $x \neq 0$ required, provided reference to inverse is made "Some elements have no inverse" B0
		12	

1 (i)	$\theta = \sin^{-1} \frac{ [5, 6, -7] \cdot [1, 2, -1] }{\sqrt{5^2 + 6^2 + (-7)^2} \sqrt{1^2 + 2^2 + (-1)^2}}$	M1*	For using scalar product of line and plane vectors
	$\sqrt{5^2 + 6^2 + (-7)^2} \sqrt{1^2 + 2^2 + (-1)^2}$	M1 (*dep)	For both moduli seen
	24 50 40 (50 000 0 4 20 5)	A1	For correct scalar product
	$\theta = \sin^{-1} \frac{24}{\sqrt{110}\sqrt{6}} = 69.1^{\circ} (69.099^{\circ}, 1.206)$	A1 4	For correct angle
		SR	For vector product of line and plane vectors
	$\phi = \sin^{-1} \frac{\left [5, 6, -7] \times [1, 2, -1] \right }{\sqrt{5^2 + 6^2 + (-7)^2} \sqrt{1^2 + 2^2 + (-1)^2}}$	M1*	AND finding modulus of result
	V3 + 0 + (+) V1 + 2 + (1)	M1 (*dep)	For moduli of line and plane vectors seen
	$\phi = \sin^{-1} \frac{\sqrt{84}}{\sqrt{110}\sqrt{6}} = 20.9^{\circ} \implies \theta = 69.1^{\circ}$	A1	For correct modulus $\sqrt{84}$
	γιιονο	A1	For correct angle
(ii)	METHOD 1		
	$d = \frac{\left 1 + 12 + 3 - 40\right }{\sqrt{1^2 + 2^2 + (-1)^2}} = \frac{24}{\sqrt{6}} = 4\sqrt{6} \approx 9.80$	M1 A1 2	For use of correct formula For correct distance
	$\sqrt{1^2 + 2^2 + (-1)^2}$ $\sqrt{6}$	Al Z	1 of correct distance
	METHOD 2		
	$(1+\lambda) + 2(6+2\lambda) - (-3-\lambda) = 40$	M1	For substituting parametric form into plane
	$\Rightarrow \lambda = 4 \Rightarrow d = 4\sqrt{6}$	A1	For correct distance
	OR distance from $(1, 6, -3)$ to $(5, 14, -7)$		
	$=\sqrt{4^2+8^2+(-4)^2}=\sqrt{96}$		
	METHOD 3		
	Plane through $(1, 6, -3)$ parallel to p is	M1	For finding parallel plane through $(1, 6, -3)$
	$x + 2y - z = 16 \implies d = \frac{40 - 16}{\sqrt{6}} = \frac{24}{\sqrt{6}}$	A1	For correct distance
	70 70		
	METHOD 4		
	e.g. $(0, 0, -40)$ on p	M1	For using any point on <i>p</i> to find vector and scalar product seen
	\Rightarrow vector to $(1, 6, -3) = \pm (1, 6, 37)$		e.g. [1, 6, 37] • [1, 2, -1]
	$[1, 6, 37] \cdot [1, 2, -1]$ 24	A1	For correct distance
	$d = \frac{ [1, 6, 37] \cdot [1, 2, -1] }{\sqrt{6}} = \frac{24}{\sqrt{6}}$		
	METHOD 5		
	<i>l</i> meets <i>p</i> where $(1+5t)+2(6+6t)-(-3-7t)=40$		For finding <i>t</i> where <i>l</i> meets <i>p</i>
	$\Rightarrow t = 1 \Rightarrow d = [5, 6, -7] \sin \theta$	M1	and linking d with triangle
	$\rightarrow \sqrt{110}$ 24 24	A1	For correct distance
	$\Rightarrow d = \sqrt{110} \frac{24}{\sqrt{110}\sqrt{6}} = \frac{24}{\sqrt{6}}$	_	
		6	
2 (i)	METHOD 1	3.41	$\pm \frac{1}{2}i\theta$
. ,	$1 + e^{i\theta}$ $e^{-\frac{1}{2}i\theta} + e^{\frac{1}{2}i\theta}$	M1	EITHER For changing LHS terms to $e^{\pm \frac{1}{2}i\theta}$
	EITHER $\frac{1 + e^{i\theta}}{1 - e^{i\theta}} = \frac{e^{-\frac{1}{2}i\theta} + e^{\frac{1}{2}i\theta}}{e^{-\frac{1}{2}i\theta} - e^{\frac{1}{2}i\theta}}$		OR in reverse For using $\cot \frac{1}{2}\theta = \frac{\cos \frac{1}{2}\theta}{\sin \frac{1}{2}\theta}$
	$\frac{2\cos\frac{1}{2}\theta}{-\cot\frac{1}{2}\theta}$	М1	
	$= \frac{1}{-2i\sin\frac{1}{2}\theta} = 1\cot\frac{1}{2}\theta$	IVII	For either of $\frac{\cos \frac{1}{2}\theta}{\sin \frac{1}{2}\theta} = \frac{e^2 + \frac{1}{2}e^{-\frac{1}{2}}}{(2)(2)}$ soi
	-	A1 3	
	OR in reverse with similar working		
			award M1 M1 A0
	$= \frac{2\cos\frac{1}{2}\theta}{-2i\sin\frac{1}{2}\theta} = i\cot\frac{1}{2}\theta$ <i>OR in reverse</i> with similar working	M1 A1 3	For either of $\frac{\cos \frac{1}{2}\theta}{\sin \frac{1}{2}\theta} = \frac{e^{\frac{1}{2}i\theta} \pm e^{-\frac{1}{2}i\theta}}{(2)(i)}$ soi For fully correct proof to AG SR If factors of 2 or i are not clearly seen, award M1 M1 A0

A1

METHOD 2 2 (i)

$$\textit{EITHER} \ \frac{1 + e^{i\theta}}{1 - e^{i\theta}} \times \frac{1 - e^{-i\theta}}{1 - e^{-i\theta}} = \frac{e^{i\theta} - e^{-i\theta}}{2 - \left(e^{i\theta} + e^{-i\theta}\right)}$$

For multiplying top and bottom by complex M1conjugate in exp or trig form

$$OR \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta} \times \frac{1 - \cos\theta + i\sin\theta}{1 - \cos\theta + i\sin\theta}$$

$$= \frac{2i\sin\theta}{2 - 2\cos\theta} = \frac{2i\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}{2\sin^2\frac{1}{2}\theta} = i\cot\frac{1}{2}\theta$$

M1For using both double angle formulae correctly

For fully correct proof to AG

METHOD 3

$$\frac{1+\cos\theta+\mathrm{i}\sin\theta}{1-\cos\theta-\mathrm{i}\sin\theta} = \frac{2\cos^2\frac{1}{2}\theta+2\mathrm{i}\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}{2\sin^2\frac{1}{2}\theta-2\mathrm{i}\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}$$

M1 For using both double angle formulae

$$=\frac{2\cos\frac{1}{2}\theta\left(\cos\frac{1}{2}\theta+\mathrm{i}\sin\frac{1}{2}\theta\right)}{2\sin\frac{1}{2}\theta\left(\sin\frac{1}{2}\theta-\mathrm{i}\cos\frac{1}{2}\theta\right)}$$

M1 For appropriate factorisation

$$= i\cot\frac{1}{2}\theta \frac{\left(\sin\frac{1}{2}\theta - i\cos\frac{1}{2}\theta\right)}{\left(\sin\frac{1}{2}\theta - i\cos\frac{1}{2}\theta\right)} = i\cot\frac{1}{2}\theta$$

A1 For fully correct proof to AG

METHOD 4

$$\frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta} = \frac{1+\frac{1-t^2}{1+t^2}+i\frac{2t}{1+t^2}}{1-\frac{1-t^2}{1+t^2}-i\frac{2t}{1+t^2}}$$

M1 For substituting both t formulae correctly

$$= \frac{2+2it}{2t^2-2it} = \frac{1}{t} \frac{1+it}{t-i} = \frac{i}{t} \frac{t-i}{t-i} = i \cot \frac{1}{2}\theta$$

For appropriate factorisation M1 **A**1 For fully correct proof to AG

METHOD 5

$$\begin{aligned} &\frac{1+e^{i\theta}}{1-e^{i\theta}} \times \frac{1+e^{i\theta}}{1+e^{i\theta}} = \frac{1+2e^{i\theta}+e^{2i\theta}}{1-e^{2i\theta}} \\ &= \frac{2+e^{i\theta}+e^{-i\theta}}{e^{-i\theta}-e^{i\theta}} \end{aligned}$$

For multiplying top and bottom by $1+e^{i\theta}$

and attempting to divide by $e^{i\theta}$ M1*OR* multiplying top and bottom by $1 + e^{-i\theta}$

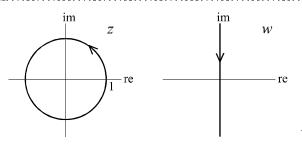
 $=\frac{2(1+\cos\theta)}{-2i\sin\theta}=\frac{2\cos^2\frac{1}{2}\theta}{-2i\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}=\frac{\cos\frac{1}{2}\theta}{-i\sin\frac{1}{2}\theta}$

For using both double angle formulae M1 correctly

 $= i \cot \frac{1}{2}\theta$

A1 **3** For fully correct proof to AG

(ii)



M1 For a circle centre O

A1 For indication of radius = 1and anticlockwise arrow shown

B1 3 For locus of w shown as imaginary axis described downwards

6

3 (i)	METHOD 1	M1	For correct auxiliary equation (soi)
	$m+4 (=0) \Rightarrow CF (y=)Ae^{-4x}$	A1 2	For correct CF
	METHOD 2		
	Separating variables on $\frac{dy}{dx} + 4y = 0$		
	$\Rightarrow \ln y = -4x$	M1	For integration to this stage
	\Rightarrow CF $(y =) Ae^{-4x}$	A1	For correct CF
(ii)	$PI (y =) p \cos 3x + q \sin 3x$	B1	For stating PI of correct form
	$y' = -3p\sin 3x + 3q\cos 3x$	M1	For substituting y and y' into DE
	$\Rightarrow (-3p+4q)\sin 3x + (4p+3q)\cos 3x = 5\cos 3x$	A 1	For correct equation
	$\Rightarrow \begin{array}{l} -3p + 4q = 0 \\ 4p + 3q = 5 \end{array} \Rightarrow p = \frac{4}{5}, \ q = \frac{3}{5}$	M1 A1 A1	For equating coeffs and solving For correct value of p , and of q
	GS $(y =) Ae^{-4x} + \frac{4}{5}\cos 3x + \frac{3}{5}\sin 3x$	B1√ 7	For GS f.t. from their CF+PI with 1 arbitrary constant
	CD Later of the Control of the Later of the Control	1 6 11	in CF and none in PI
	SR Integrating factor method may be use		d by 2-stage integration by parts or $C+iS$ method or (i) are awarded only if CF is clearly identified
(iii)	$e^{-4x} \to 0$, $\frac{4}{5}\cos 3x + \frac{3}{5}\sin 3x = \frac{\sin}{\cos}(3x + \alpha)$	M1	For considering either term
	$\Rightarrow -1 \leqslant y \leqslant 1 OR -1 \lessapprox y \lessapprox 1$	A1√ 2	For correct range (allow <) CWO
	$\rightarrow -1 \leqslant y \leqslant 1 OR -1 \approx y \approx 1$		f.t. as $-\sqrt{p^2 + q^2} \le y \le \sqrt{p^2 + q^2}$ from (ii)
		11	
4 (i)	abc = (ab)c = (ba)c = b(ac) =	M1	For using commutativity correctly
	b(ca) = (bc)a = (cb)a = cba	A1 2	For correct proof
	Minimum working:		(use of associativity may be implied)
	Transment Westing.		
	abc = bac = bca = cba		
	abc = bac = bca = cba $OR \ abc = acb = cab = cba$		
	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$	D1	For one 5 aukonouna
(ii)	abc = bac = bca = cba $OR \ abc = acb = cab = cba$	B1 B1 2	For any 5 subgroups For the other 2 subgroups and none incorrect
(ii) (iii)	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$	B1 B1 2 B1	For any 5 subgroups For the other 2 subgroups and none incorrect For any 3 subgroups
	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$ $\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}$	B1 2	For the other 2 subgroups and none incorrect
	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$ $\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}\}$ $\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$	B1 2 B1	For the other 2 subgroups and none incorrect For any 3 subgroups For 1 more subgroup For 1 more subgroup (5 in total)
(iii)	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$ $\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}\}$ $\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$ $\{e, a, bc, abc\}, \{e, b, ca, abc\}, \{e, c, ab, abc\}$ $\{e, bc, ca, ab\}$	B1 2 B1 B1 B1 3	For the other 2 subgroups and none incorrect For any 3 subgroups For 1 more subgroup For 1 more subgroup (5 in total) and none incorrect
	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$ $\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}\}$ $\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$ $\{e, a, bc, abc\}, \{e, b, ca, abc\}, \{e, c, ab, abc\}$ $\{e, bc, ca, ab\}$ All elements $(\neq e)$ have order 2	B1 2 B1 B1	For the other 2 subgroups and none incorrect For any 3 subgroups For 1 more subgroup For 1 more subgroup (5 in total)
(iii)	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$ $\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}\}$ $\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$ $\{e, a, bc, abc\}, \{e, b, ca, abc\}, \{e, c, ab, abc\}$ $\{e, bc, ca, ab\}$	B1 2 B1 B1 B1 3	For the other 2 subgroups and none incorrect For any 3 subgroups For 1 more subgroup For 1 more subgroup (5 in total) and none incorrect For appropriate reference to order of elements
(iii)	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$ $\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}\}$ $\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$ $\{e, a, bc, abc\}, \{e, b, ca, abc\}, \{e, c, ab, abc\}$ $\{e, bc, ca, ab\}$ All elements $(\neq e)$ have order 2 OR all are self-inverse OR no element of G has order 4 OR no order 4 subgroup has a generator OR is cyclic	B1 2 B1 B1 B1 3	For the other 2 subgroups and none incorrect For any 3 subgroups For 1 more subgroup For 1 more subgroup (5 in total) and none incorrect For appropriate reference to order of elements
(iii)	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$ $\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}\}$ $\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$ $\{e, a, bc, abc\}, \{e, b, ca, abc\}, \{e, c, ab, abc\}$ $\{e, bc, ca, ab\}$ All elements $(\neq e)$ have order 2 OR all are self-inverse OR no element of G has order 4 OR no order 4 subgroup has a generator or is cyclic OR subgroups are of the form $\{e, a, b, ab\}$	B1 2 B1 B1 B1 3	For the other 2 subgroups and none incorrect For any 3 subgroups For 1 more subgroup For 1 more subgroup (5 in total) and none incorrect For appropriate reference to order of elements
(iii)	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$ $\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}\}$ $\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$ $\{e, a, bc, abc\}, \{e, b, ca, abc\}, \{e, c, ab, abc\}$ $\{e, bc, ca, ab\}$ All elements $(\neq e)$ have order 2 OR all are self-inverse OR no element of G has order 4 OR no order 4 subgroup has a generator OR is cyclic OR subgroups are of the form $\{e, a, b, ab\}$ (the Klein group)	B1 2 B1 B1 B1 3	For the other 2 subgroups and none incorrect For any 3 subgroups For 1 more subgroup For 1 more subgroup (5 in total) and none incorrect For appropriate reference to order of element in <i>G</i>
(iii)	$abc = bac = bca = cba$ $OR \ abc = acb = cab = cba$ $OR \ abc = bac = bca = cba$ $\{e, a\}, \{e, b\}, \{e, c\}, \{e, bc\}, \{e, ca\}, \{e, ab\}, \{e, abc\}\}$ $\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$ $\{e, a, bc, abc\}, \{e, b, ca, abc\}, \{e, c, ab, abc\}$ $\{e, bc, ca, ab\}$ All elements $(\neq e)$ have order 2 OR all are self-inverse OR no element of G has order 4 OR no order 4 subgroup has a generator or is cyclic OR subgroups are of the form $\{e, a, b, ab\}$	B1 2 B1 B1 B1 3	For the other 2 subgroups and none incorrect For any 3 subgroups For 1 more subgroup For 1 more subgroup (5 in total) and none incorrect For appropriate reference to order of elements

5 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = k u^{k-1} \frac{\mathrm{d}u}{\mathrm{d}x}$	M1	For using chain rule
	dx dx	A1	For correct $\frac{dy}{dx}$
	$\Rightarrow x k u^{k-1} \frac{\mathrm{d}u}{\mathrm{d}x} + 3u^k = x^2 u^{2k}$	M1	For substituting for <i>y</i> and $\frac{dy}{dx}$
	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{3}{kx}u = \frac{1}{k}xu^{k+1}$	A1 4	For correct equation AG
(ii)	<i>k</i> = −1	B1 1	For correct k
(iii)	$\frac{\mathrm{d}u}{\mathrm{d}x} - \frac{3}{x}u = -x \implies \text{IF } e^{-\int \frac{3}{x} \mathrm{d}x} = e^{-3\ln x} = \frac{1}{x^3}$	B1√	For correct IF
	$dx x \qquad x^3$		f.t. for IF = $x^{\frac{3}{k}}$
			using k or their numerical value for k
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(u \cdot \frac{1}{x^3} \right) = -\frac{1}{x^2}$	M1	For $\frac{d}{dx}(u)$ their IF = $-x$ their IF
	$\Rightarrow u \cdot \frac{1}{x^3} = \frac{1}{x} (+c) \Rightarrow y = \frac{1}{cx^3 + x^2}$	A1 A1 4	For correct integration both sides For correct solution for <i>y</i>
		9	
6 (a)	Closure $(ax+b)+(cx+d) = (a+c)x+(b+d)$	B1	For obtaining correct sum from 2 distinct
	$\in P$	B1	elements For stating result is in <i>P</i>
	$\in I$	Dī	OR is of the correct form
			SR award this mark if any of the closure
			result, the identity or the inverse element is stated to be in <i>P OR</i> of the correct form
	Identity $0x + 0$	B1	For stating identity (allow 0)
	Inverse $-ax-b$	B1 4	For stating inverse
(b) (i)	Order 9	B1* 1	For correct order
(ii)	x + 2	B1 1	For correct inverse element
(iii)	(an + b) + (an + b) + (an + b) + 2an + 2b	M1	For considering sums of $ax + b$
	(ax+b)+(ax+b)+(ax+b) = 3ax+3b		and obtaining $3ax + 3b$
	=0x+0		For equating to $0x + 0$ OR 0
	$\Rightarrow ax + b$ has order $3 \forall a, b$ (except $a = b = 0$)	A1	and obtaining order 3
			SR For order 3 stated only <i>OR</i> found from incomplete consideration of numerical cases award B1
	Cyclic group of order 9 has element(s) of order 9	M1 (*dep)	For reference to element(s) of order 9
	$\Rightarrow (Q, + \pmod{3})$ is not cyclic	A1 4	For correct conclusion
		10	

7 (i)	R Q	B1	For sketch of tetrahedron labelled in some way At least one right angle at <i>O</i> must be indicated or clearly implied
	0 212 p	M1	For using $\Delta = \frac{1}{2}$ base × height
	$\Delta OPQ = \frac{1}{2} pq$, $\Delta OQR = \frac{1}{2} qr$, $\Delta ORP = \frac{1}{2} rp$	A1 3	For all areas correct CAO
(ii)	$\frac{1}{2} \left \overrightarrow{RP} \times \overrightarrow{RQ} \right = \frac{1}{2} \left \overrightarrow{RP} \right \left \overrightarrow{RQ} \right \sin R = \Delta PQR$	B1 1	For correct justification
(iii)	LHS = $\left(\frac{1}{2}pq\right)^{2} + \left(\frac{1}{2}qr\right)^{2} + \left(\frac{1}{2}rp\right)^{2}$	B1	For correct expression
	$\Delta PQR = \frac{1}{2} (p\mathbf{i} - q\mathbf{j}) \times (p\mathbf{i} - r\mathbf{k}) $	B1	For $\triangle PQR$ in vector form
	$OR \frac{1}{2} (p\mathbf{i} - r\mathbf{k}) \times (q\mathbf{j} - r\mathbf{k}) $		
	$OR \frac{1}{2} (p\mathbf{i} - q\mathbf{j}) \times (q\mathbf{j} - r\mathbf{k}) $		
	$\Delta PQR = \frac{1}{2} \left qr\mathbf{i} + pr\mathbf{j} + pq\mathbf{k} \right $	M1	For finding vector product of their attempt at ΔPQR
		A1	For correct expression
	RHS = $\frac{1}{4} ((pq)^2 + (qr)^2 + (rp)^2)$	M1	For using $ a\mathbf{i} + b\mathbf{j} + c\mathbf{k} = \sqrt{a^2 + b^2 + c^2}$
	\	A1 6	For completing proof of AG WWW

A1 **6** 10

For completing proof of **AG WWW**

3 (i)	$Re(c+is)^4 = \cos 4\theta = c^4 - 6c^2s^2 + s^4$	M1*	For expanding $(c+is)^4$: at least 2 terms and 1 binomial coefficient needed
	$\cos 4\theta = c^4 - 6c^2(1 - c^2) + (1 - c^2)^2$	A1 M1 (*dep)	For 3 correct terms For using $s^2 = 1 - c^2$
	$\Rightarrow \cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$	A1 4	For correct expression for $\cos 4\theta$ CAO
(ii)	$\cos 4\theta \cos 2\theta = (8c^4 - 8c^2 + 1)(2c^2 - 1)$		For multiplying by $(2c^2-1)$
	$=16\cos^{6}\theta - 24\cos^{4}\theta + 10\cos^{2}\theta - 1$	B1 1	to obtain AG WWW
(iii)	$16c^6 - 24c^4 + 10c^2 - 2 = 0$	M1	For factorising sextic
	$\Rightarrow (c^2 - 1)(8c^4 - 4c^2 + 1) = 0$		with $(c-1)$, $(c+1)$ or (c^2-1)
	For quartic, $b^2 - 4ac = 16 - 32 < 0$	A1	For justifying no other roots CWO
	$\Rightarrow c = \pm 1 \text{ only } \Rightarrow \theta = n \pi$	A1 3	For obtaining $\theta = n \pi$ AG
			Note that M1 A0 A1 is possible
		SR	For verifying $\theta = n \pi$ by substituting $c = \pm 1$
			into $16c^6 - 24c^4 + 10c^2 - 2 = 0$ B1
(iv)	$16c^6 - 24c^4 + 10c^2 = 0$		
	$\Rightarrow c^2 \left(8c^4 - 12c^2 + 5 \right) = 0$	M1	For factorising sextic with c^2
	For quartic, $b^2 - 4ac = 144 - 160 < 0$	A1	For justifying no other roots CWO
	$\Rightarrow \cos \theta = 0$ only	A1 3	For correct condition obtained AG
			Note that M1 A0 A1 is possible
		SR	For verifying $\cos \theta = 0$ by substituting $c = 0$
			into $16c^6 - 24c^4 + 10c^2 = 0$ B1
		SR	For verifying $\theta = \frac{1}{2}\pi$ and $\theta = -\frac{1}{2}\pi$ satisfy
			$\cos 4\theta \cos 2\theta = -1 B1$
		11	

C	uesti	on	Answer	Marks	Guidance
1	(i)		$(y = xu \Rightarrow) \frac{dy}{dx} = x\frac{du}{dx} + u$ $x\frac{du}{dx} + u = \frac{2 + u^2}{u}$	B1	For a correct statement
			$du + u^2$	M1	For using the substitution to eliminate <i>y</i>
			$x \frac{dx}{dx} + u = \frac{u}{u}$		(If B0, then y must be eliminated from LHS, but $\frac{d(uv)}{dx}$ sufficient)
			$\Rightarrow x \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2}{u}$	A1	For correct equation AG
			dx u	[3]	
1	(ii)		$\int u \mathrm{d}u = \int \frac{2}{x} \mathrm{d}x$	M1	For separating variables and writing/attempting integrals
			$\Rightarrow \frac{1}{2}u^2 = 2\ln((k)x) \ OR \ \frac{1}{2}u^2 = 2\ln x \ (+c)$	A1	For correct integration both sides (<i>k</i> or <i>c</i> not required here)
			$\Rightarrow \frac{1}{2} \left(\frac{y}{x} \right)^2 = 2 \ln(kx) \ OR \ \frac{1}{2} \left(\frac{y}{x} \right)^2 = 2 \ln x + c$	M1	For substituting for u into integrated terms with constant (on either side)
			$\Rightarrow y^2 = 4x^2 \ln(kx) \ OR \ y^2 = 4x^2 \ln x + Cx^2$	A1	For correct solution AEF $y^2 = f(x)$
					Do not penalise "c" being used for different constants e.g. $2 \ln x + c = 2 \ln(cx)$
				[4]	
2	(i)		$ (z^n - e^{i\theta})(z^n - e^{-i\theta}) \equiv z^{2n} - 2z^n \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right) + 1 $ $ \equiv z^{2n} - (2\cos\theta)z^n + 1 $	B1	For multiplying out to AG with evidence of $\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$ (Can be implied by $2\cos \theta = \left(e^{i\theta} + e^{-i\theta} \right)$)
				[1]	

C	uesti	ion	Answer	Marks	Guidance
2	(ii)		METHOD 1	M1	For using (i) to find θ
			$2\cos\theta = 1 \Rightarrow \theta = \frac{1}{3}\pi$		
			$\Rightarrow z^4 - z^2 + 1 \equiv \left(z^2 - e^{\frac{1}{3}\pi i}\right) \left(z^2 - e^{-\frac{1}{3}\pi i}\right)$	A1	For correct quadratic factors
					(Or $\frac{5\pi}{3}i$ in place of $-\frac{\pi}{3}i$)
			$\equiv \left(z + e^{\frac{1}{6}\pi i}\right) \left(z - e^{\frac{1}{6}\pi i}\right) \left(z + e^{-\frac{1}{6}\pi i}\right) \left(z - e^{-\frac{1}{6}\pi i}\right)$	M1	For factorising $(z^2 - a^2)$
				A1	For correct linear factors
			$\equiv \left(z - e^{\frac{1}{6}\pi i}\right) \left(z - e^{\frac{5}{6}\pi i}\right) \left(z - e^{\frac{7}{6}\pi i}\right) \left(z - e^{\frac{11}{6}\pi i}\right)$	M1	For adjusting arguments (must attempt correct range and " $(z - root)$ ")
				A1	For correct factors CAO
				[6]	Correct answer www gets 6
			METHOD 2	[6]	
			$z^4 - z^2 + 1 = 0 \Rightarrow z^2 = \frac{1}{2} \pm \frac{1}{2} \sqrt{3} i = e^{\frac{1}{3}\pi i}, e^{-\frac{1}{3}\pi i}$	M1	For solving quadratic
				A1	For correct roots in exp form
			$\Rightarrow z = \pm e^{\frac{1}{6}\pi i}, \pm e^{-\frac{1}{6}\pi i}$	M1 A1	For attempt to find 4 roots
					For correct roots $\pm e^{i\alpha}$
			$=e^{\frac{1}{6}\pi i}, e^{\frac{7}{6}\pi i}, e^{\frac{5}{6}\pi i}, e^{\frac{11}{6}\pi i}$	M1	For adjusting arguments
			$\Rightarrow \left(z - e^{\frac{1}{6}\pi i}\right) \left(z - e^{\frac{5}{6}\pi i}\right) \left(z - e^{\frac{7}{6}\pi i}\right) \left(z - e^{\frac{11}{6}\pi i}\right)$	A1	For correct factors CAO
3	(i)		METHOD 1		
			$(yx)(yx)^{-1} = e \implies x(yx)^{-1} = y^{-1}$	M1	For starting point and appropriate multiplication
			$\Rightarrow (yx)^{-1} = x^{-1}y^{-1}$	A1	For correct result AG
				[2]	
			METHOD 2	3.41	
			Compare $(yx)(yx)^{-1} = e$ with $yxx^{-1}y^{-1} = e$	M1	For appropriate comparison
			$\Rightarrow (yx)^{-1} = x^{-1}y^{-1}$	A1	For correct result AG
					For A1, proof cannot be written in the form 'LHS = RHS $\rightarrow \rightarrow$ e = e'

C	uestion	Answer	Marks	Guidance
3	(ii)	$x^{n}y^{n} = (xy)^{n} = x(yx)^{n-1}y$	M1	For using associativity or an inverse with respect to LHS, RHS or initial equality www beforehand
		$\Rightarrow x^{-1}x^{n}y^{n}y^{-1} = x^{-1}x(yx)^{n-1}yy^{-1}$	M1	For using $(xy)^n = x(yx)^{n-1}y$ oe
		$\Rightarrow x^{n-1}y^{n-1} = (yx)^{n-1}$	A1	For correct result AG
				SR for numerical <i>n</i> used, allow M1 M1 only
			[3]	
3	(iii)	METHOD 1		
		All steps in (ii) are reversible	B1*dep	For correct reason. Dep on correct part(ii)
		⇒ result follows	B1*dep	For correct conclusion
			[2]	
		METHOD 2		
		Show working for (ii) in reverse	B1*	For correct working
		⇒ result follows	B1*dep	For correct conclusion

Question	Answer	Marks	Guidance
4 (i)			Coordinates or vectors allowed throughout
	METHOD 1 (M, then distance)	D.1	
	M = (1+2t, 1+3t, -1+2t)	B1	For correct parametric form soi
	$\mathbf{AM} = (\pm)[2t - 6, 3t - 2, 2t - 8]$	B1 FT	For correct vector. FT from M
	AM perp. $l \Rightarrow 2(2t-6) + 3(3t-2) + 2(2t-8) = 0$	M1	For using perpendicular condition
	2 14 (5.7.2)	A1 A1	For correct equation For correct coordinates
	$\Rightarrow t=2, M=(5,7,3)$		
	$AM = \sqrt{2^2 + 4^2 + 4^2} = 6$	M1 A1	For using distance formula For correct distance
		[7]	Por correct distance
	METHOD 2(a) (distance, then M)	[,]	
	$(C = (1, 1, -1))$ AC = $\pm [6, 2, 8]$	B1	For correct vector
	$\mathbf{n} = \mathbf{AC} \times [2, 3, 2] = k[-20, 4, 14]$	M1	For finding $\mathbf{AC} \times \text{direction of } l$
	$d = \frac{ \mathbf{n} }{ [2, 3, 2] } = \frac{\sqrt{612}}{\sqrt{17}} = 6$	A1 FT	For correct n . FT from n
	$a = \frac{1}{[2, 3, 2]} = \frac{1}{\sqrt{17}} = 0$	A1	For correct distance
	$CM = \sqrt{(6^2 + 2^2 + 8^2) - 6^2} = 2\sqrt{17}$	M1	For a correct method for finding position of M
	$ [2,3,2] = \sqrt{17} \implies t = 2, M = (5,7,3)$	B1	For $ [2, 3, 2] = \sqrt{17}$ soi
		A1	
	METHOD 2(b)		
	$(C = (1, 1, -1)) \mathbf{AC} = \pm [6, 2, 8]$	B1	For correct vector
	$\cos \theta = \frac{AC \cdot (2,3,2)}{ AC (2,3,2) }, \ \theta = 36.0(39) \text{ or } \sin \theta = \frac{153}{\sqrt{442}}$	M1,A1	
	$ AM = AC \sin\theta = 6$	M1,A1	
	M = (5, 7, 3)	M1,A1	As above

C	uesti	on	Answer	Marks	Guidance
4	(ii)		AM = [-2, 4, -4] or MA = [2, -4, 4] ⇒ B = (7, 3, 7) + $\frac{3}{4}$ (-2, 4, -4) = $\left(7 - \frac{3}{2}, 3 + 3, 7 - 3\right)$	M1	For using $A + k_1 \overrightarrow{AM}$ or $M + k_2 \overrightarrow{MA}$ or ratio theorem or equivalent
			OR $B = (5, 7, 3) + \frac{1}{4}(2, -4, 4) = (5 + \frac{1}{2}, 7 - 1, 3 + 1)$	M1	For $B = (7, 3, 7) + \frac{3}{4}x$ 'their (-2,4,-4) oe
			OR (15 7 21 2 9 7)		(or M1 for quadratic in parameter for line AM, followed by M1 for attempt to use correct value of parameter to find B)
			$B = \frac{3}{4}(5,7,3) + \frac{1}{4}(7,3,7) = \left(\frac{15}{4} + \frac{7}{4}, \frac{21}{4} + \frac{3}{4}, \frac{9}{4} + \frac{7}{4}\right)$ $B = \left(\frac{11}{2}, 6, 4\right)$	A1	For correct coordinates
				[3]	
5	(i)		$\left(2m^2 + 3m - 2 = 0\right) \Longrightarrow m = \frac{1}{2}, -2$	M1	For attempt to solve correct auxiliary equation
			$CF = Ae^{\frac{1}{2}x} + Be^{-2x}$	A1	For correct CF
				[2]	
5	(ii)		$\frac{\mathrm{d}y}{\mathrm{d}x} = p \mathrm{e}^{-2x} - 2px \mathrm{e}^{-2x}$	M1	For differentiating PI twice, using product rule
			$\frac{dy}{dx} = p e^{-2x} - 2px e^{-2x}$ $\frac{d^2 y}{dx^2} = -4p e^{-2x} + 4px e^{-2x}$	A1	For correct $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$
			$\Rightarrow (-8p + 3p + 8px - 6px - 2px)e^{-2x} = 5e^{-2x}$	M1	For substituting into DE
			$\Rightarrow p = -1$	A1	For correct p
				[4]	

C	Questi	on	Answer	Marks	Guidance
5	(iii)		GS $(y =) Ae^{\frac{1}{2}x} + Be^{-2x} - xe^{-2x}$	B1 FT	For GS soi. FT from CF (2 constants) and p
			$(0,0) \Rightarrow A + B = 0$	B1 FT	For correct equation. FT from GS of form $Ae^{\alpha x} + Be^{\beta x} - Cxe^{-2x}$
			$\frac{dy}{dx} = \frac{1}{2}Ae^{\frac{1}{2}x} - 2Be^{-2x} - e^{-2x} + 2xe^{-2x}$		
			$\left(0, \frac{\mathrm{d}y}{\mathrm{d}x} = 4\right) \Rightarrow \frac{1}{2}A - 2B = 5$	M1	For differentiating GS and substituting values, using GS of form $Ae^{\alpha x} + Be^{\beta x} - Cxe^{-2x}$
			$\Rightarrow A = 2, B = -2$	M1	For solving for A and B (can be gained from incorrect GS)
			$\Rightarrow y = 2e^{\frac{1}{2}x} - 2e^{-2x} - xe^{-2x}$	A1	For correct solution, including $y =$
				[5]	
6	(i)		METHOD 1 $\mathbf{n} = [2, -1, -1] \times [2, -3, -5] = [2, 8, -4]$ $\mathbf{n} = k[1, 4, -2]$	M1 A1	For finding vector product of 2 vectors in Π (or 2 scalar products = 0, with attempt to solve) For correct n
			Π is $\mathbf{r} \cdot \mathbf{n} = [1, 6, 7] \cdot \mathbf{n}$	M1	For attempt to find equation of Π , including cartesian equation
			$\Rightarrow \mathbf{r} \cdot [1, 4, -2] = 11$	A1	For correct equation (allow multiples)
			METHOD 2 $y-z=-1+2\mu$ $\mu = \frac{y-z+1}{2}$	M1	for finding λ or μ in terms of two from x,y,z.
			$\lambda = 7 - z - 5 \frac{y - z + 1}{2}$	M1	For both λ & μ
			x = 11 + 2z - 4y	A1	AEF
			r.(1,4,-2)=11	A1 [4]	

C	Questi	on	Answer	Marks	Guidance
6	(ii)		$[7+3t, 4, 1-t] \cdot \mathbf{n} = 11 \implies t = -2$	M1	For attempt to find t , (or to find λ and μ by equating original
					equations)
			\Rightarrow [1, 4, 3]	A1	For correct position vector <i>OR</i> point
				[2]	
6	(iii)		METHOD 1		
			$\mathbf{c} = [1, 4, -2] \times [2, -1, -1]$	M1	For using given vector product (or 2 correct 'scalar products = 0')
				M1	For calculating given vector product (or 2 correct scalar products = 0,with attempt to solve) (or M1 for using vector product of c with n or (2,-1,-1) in an equation, followed by M1 for calculating vector product and attempting to solve)
			c = k[2, 1, 3]	A1	For correct c
				[3]	
			METHOD 2 $\mathbf{c} = [2, -3, -5] + s[2, -1, -1]$ $\mathbf{c} \cdot [2, -1, -1] = 0 \Rightarrow$ 2(2+2s) - 1(-3-s) - 1(-5-s) = 0 $\Rightarrow s = -2 \Rightarrow \mathbf{c} = k[2, 1, 3]$	M1 M1 A1	For c = linear combination of $[2, -3, -5]$ and $[2, -1, -1]$ For an equation in s from $\mathbf{c} \cdot [2, -1, -1] = 0$ For correct c

Q	uesti	on	Answer	Marks	Guidance
7	(i)		$ \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ n+m & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ m+n & 1 \end{pmatrix} $	M1	For multiplying 2 distinct matrices of the correct form both ways, or generalised form at least one way,
			$= \begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \Rightarrow \text{commutative}$	A1 [2]	For stating or implying that addition is commutative and correct conclusion SR Use of numerical matrices must be generalised for any credit
7	(ii)		$(I =) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B1	For correct identity
			EITHER $ \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} $ OR $ \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow 2 + n = 0 \Rightarrow \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} $	M1 A1	For using inverse property For correct inverse
7	(iii)		$\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ has order 2	B1	For correct order
			4 is not a factor of 6	B1 [2]	For correct reason (Award B0 for "Lagrange" only). Must be explicit about the '6'
7	(iv)		$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} OR \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix} \text{ has order 6, (or > 3)}$ OR $(M, \times) \text{ is cyclic,}$ G is non-cyclic (having no element of order 6)} OR $(M, \times) \text{ is commutative}$ G is not commutative (being the non-cyclic group)} $\Rightarrow \text{ groups are not isomorphic}$	B1* B1*dep	For stating (that there is) an element of M with order 6 Award B1* for a relevant statement about M and G For correct conclusion and no false statements attached to
				[2]	conclusion

C	uesti	on	Answer	Marks	Guidance
8	(i)		$\cos 5\theta + i \sin 5\theta =$		
			$c^5 + 5ic^4s - 10c^3s^2 - 10ic^2s^3 + 5cs^4 + is^5$	B1	For explicit use of de Moivre with $n = 5$
			$\Rightarrow \tan 5\theta = \frac{\sin 5\theta}{\cos 5\theta} = \frac{5c^4s - 10c^2s^3 + s^5}{c^5 - 10c^3s^2 + 5cs^4}$	M1	For correct expressions for $\sin 5\theta$ and $\cos 5\theta$
			Division of numerator & denominator by c^5 . $\Rightarrow \tan 5\theta = \frac{5 \tan \theta - 10 \tan^3 \theta + \tan^5 \theta}{1 - 10 \tan^2 \theta + 5 \tan^4 \theta}$	M1 A1	For $\frac{\sin 5\theta}{\cos 5\theta}$ in terms of c and s For simplifying to AG , www with explicit mention of division by c^5
8	(ii)		$5\theta = \{1, 5, 9, 13, 17\} \frac{1}{4}\pi$	[4] M1	For at least 2 of given values and no extras.
			$\theta = \{1, 5, 9, 13, 17\} \frac{1}{20}\pi$	A1 A1 [3]	For at least 3 values of θ and no extras in range For all 5 values and no extras outside range
8	(iii)		$\tan 5\theta = 1 \Rightarrow t^5 - 5t^4 - 10t^3 + 10t^2 + 5t - 1 = 0$	M1*	For $\tan 5\theta = 1$ and equation in t
			$\Rightarrow (t-1)(t^4-4t^3-14t^2-4t+1)=0$	A1	For correct factors
			$\tan \alpha = 1$ OR $\alpha = \frac{1}{4}\pi$ is not included in roots of the quartic	B1	For solution rejected (may be implied by $\frac{5}{20}\pi$ not appearing in set of solutions)
			$\Rightarrow t = \tan \alpha \text{ for } \alpha = \{1, 9, 13, 17\} \frac{1}{20} \pi$	M1*dep	For 2 correct values of t
			7.20	A1 [5]	For all 4 values and no more in range

Q	uestio	n	Answer	Marks	Guidance	
1			METHOD 1			
			$\mathbf{b} = [1, -3, 4] \times [3, 1, 2] = [-10, 10, 10]$	M1	For attempt to find vector product of directions	
			= k[-1, 1, 1]	M1	Correct calculation of vector product	Allow 1 error
				A1	For correct b .	
			\Rightarrow r = [1, 4, 2] + t[-1, 1, 1]	B1 FT	For correct equation. FT from b	
				[4]		
			METHOD 2		For an amostical from 1, respect displants assumed of alone	
			$[x, y, z] \cdot [1, -3, 4] = 0 \implies x - 3y + 4z = 0$	3.51	For an equation from l_2 perpendicular to normal of plane	
			$[x, y, z] \cdot [3, 1, 2] = 0 \implies 3x + y + 2z = 0$	M1	and an equation from l_2 perpendicular to l_1	
				3.41		
			Solving \Rightarrow [x, y, z] = $\mathbf{b} = k[-1, 1, 1]$	M1 A1		
				Ai		
			\Rightarrow r = [1, 4, 2] + t[-1, 1, 1]	B1FT	For correct equation. FT. from b	Must show " r ="
2	(i)		$z^4 = 4\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 4\operatorname{cis}\frac{1}{3}\pi$	B1	For $arg(z^4) = \frac{1}{3}\pi$ soi	
			()	M1	For dividing $arg(z^4)$ by 4	
			$z = \sqrt{2} \operatorname{cis} \left(k \frac{\pi}{12} \right), k = 1, 7, 13, 19$	A1	For any 2 correct values of k	
			- (* 12),, ., .,,	A1	For all 4 values of <i>k</i> and no extras. Ignore values outside	For second A1, must be in correct form.
				B1	range For modulus of all stated roots = $\sqrt{2}$	Don't accept 1.41 or
					1 of modulus of all stated foots – $\sqrt{2}$	$\frac{4\sqrt{4}}{4}$
					SR For $arg(z^4) = \frac{1}{6}\pi$ award B0 M1 A1 FT for all	
					$\operatorname{cis}\left(k\frac{\pi}{24}\right), k = 1, 13, 25, 37, \text{ A0 B0/B1}$	
				[5]		

Q	Questio	n	Answer	Marks	Guidance	
2	(ii)		Im /	B1	For roots forming a square, centre <i>O</i> , on equal-scale axes.	Must be roots distinct from z^4 Penalise once use of points not lines
			Re	B1	For z ⁴ and only one root in first quadrant with arguments in ratio approximately 3:1	
				B1	For $ z^4 : z \approx 4 : \sqrt{2}$ (allow (2,4):1)	For all four roots
				[3]		
3			Integrating factor = $e^{\int \cot x dx} = e^{\ln \sin x} = \sin x$	M1	For IF = $e^{\pm \ln \sin x} OR e^{\pm \ln \cos x}$	
				A1	For simplified IF	
			$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(y\sin x) = 2x\sin x$	M1	For $\frac{d}{dx}(y.\text{their IF}) = 2x.\text{their IF}$	
			$\Rightarrow y \sin x = -2x \cos x + \int 2 \cos x dx$	M1*	For attempt to integrate RHS using	(Must use $u = (2)x$)
			, j		parts for $\int x \begin{cases} \sin x \\ \cos x \end{cases} dx$	
				A1	For correct RHS 1st stage	
			$\Rightarrow y \sin x = -2x \cos x + 2 \sin x (+c)$	A1	oe	
			$\left(\frac{1}{6}\pi,2\right) \Rightarrow c = \frac{1}{6}\pi\sqrt{3}$	M1dep *	For substituting $\left(\frac{1}{6}\pi, 2\right)$ into their GS (with c)	c = 0.907
			. –	A1 FT	For correctly finding c (FT from GS)	
			$\Rightarrow y = -2x \cot x + 2 + \frac{1}{6}\pi\sqrt{3}\csc x$	A1	For correct solution AEF of standard notation $y = f(x)$	
				[9]		

C	uestion	Answer	Marks	Guidance	
4	(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2	For correct table for H	
		$\begin{vmatrix} e & e & r & r^2 & r^3 \\ r & r & r^2 & r^3 & e & p & p & e & pq & q \end{vmatrix}$	B2	For correct table for <i>K</i>	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[4]	SR In both tables allow B1 for 1 or 2 errors	
4	(ii)	Identity = b	B1	For correct identity	
			[1]		
4	(iii)	G is isomorphic to H	B1	For H identified as isomorphic to G (may be implied by table)	
		$ \begin{array}{c cccc} G & H & H \\ \hline a & r^2 & r^2 \\ b & e & e \\ c & r & r^3 \\ d & r^3 & r \end{array} $	B1	For $a \leftrightarrow r^2$ at least once	
		b e e	B1	For $c, d \leftrightarrow r, r^3$ either way	
		$\begin{array}{c c} c & r & r \\ d & r^3 & r \end{array}$	B1	For $c, d \leftrightarrow r, r^3$ both ways and b corresponds to e explicit. Award fourth B1 only for completely correct answer. If none of last 3 marks gained, then SC1 for order of all elements of G and H	
			[4]	elements of G and II	
5	(i)	METHOD 1 $\sin^3 \theta \cos^2 \theta = \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^3 \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2$	B1	z may be used for $e^{i\theta}$ throughout $For \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right) OR \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right) soi$	
		$= -\frac{1}{32i} \left(z^3 - 3z + 3z^{-1} - z^{-3} \right) \left(z^2 + 2 + z^{-2} \right)$	M1	For expanding brackets (binomial theorem or otherwise)	
			M1 B1	For full expansion with 12 terms. For $-\frac{1}{32i}$	two brackets expanded soi by alternate method
		$= -\frac{1}{32i} \left(\left(z^5 - z^{-5} \right) - \left(z^3 - z^{-3} \right) - 2 \left(z - z^{-1} \right) \right)$	M1	For grouping terms	Can be seen at any stage
		$= -\frac{1}{16} \left(\frac{z^5 - z^{-5}}{2i} - \frac{z^3 - z^{-3}}{2i} - 2\frac{z - z^{-1}}{2i} \right)$		This step, oe, is needed for the final mark	oe includes replacing z^5 - z^{-5} with $2i\sin 5\theta$ etc
		$= -\frac{1}{16} (\sin 5\theta - \sin 3\theta - 2\sin \theta)$	A1	For simplification to AG www	
			[6]		

Q	uestio	n Answer	Marks	Guidance	
		METHOD 2			
		$\sin^3\theta\cos^2\theta = \sin^3\theta - \sin^5\theta$			
		$2i\sin\theta = z - \frac{1}{z}$	B1		
		$-8i\sin^3\theta = z^3 - 3z + \frac{3}{z} - \frac{1}{z^3}$	M1	For RHS	
		$= (z^3 - \frac{1}{z^3}) - (3z - \frac{3}{z})$		*	
		$= 2i\sin 3\theta - 6i\sin \theta$			
		$32i\sin^5\theta = z^5 - 5z^3 + 10z - \frac{10}{z} + \frac{5}{z^3} - \frac{1}{z^5}$			
		$= (z^5 - \frac{1}{z^5}) - (5z^3 - \frac{5}{z^3}) + (10z - \frac{10}{z})$	M1	For grouping terms	
		$= 2i\sin 5\theta - 10i\sin 3\theta + 20i\sin \theta$	B1	For RHS of this line and line * above	
		$\sin^3 \theta \cos^2 \theta$		1	
		$= -\frac{1}{32i} (4(2is3\theta - 6is\theta) + (2is5\theta - 10is3\theta + 20is\theta))$	B1	For $-\frac{1}{32i}$	
		$= -\frac{1}{16}(\sin 5\theta - 5\sin 3\theta + 4\sin 3\theta + 10\sin \theta - 12\sin \theta)$			
		$= -\frac{1}{16}(\sin 5\theta - \sin 3\theta - 2\sin \theta)$	A1	For ag www	
5	(ii)	2 2	M1	For either equation	Can be implied by the
		$\sin^3 \theta \cos^2 \theta = 0 \implies \sin \theta = 0 \ OR \ \cos \theta = 0$		Accept also $\sin\theta = +/-1$	A mark plus at least
		$\Rightarrow \theta = r \pi \ OR \ \theta = (2r+1)\frac{1}{2}\pi$	A1	For either solution, AEF including a list of the first few	$\sin^3\theta = 0$ or similar. At least 2 in list (and no wrong
		$\Rightarrow \theta = \frac{n\pi}{2}$	A1	For both of above solutions leading to general solution in form of AG where $k = 2$	solution)
			[3]		

C	uestic	n	Answer	Marks	Guidance	
6	(i)		METHOD 1			
			$m^2 + 4m = 0 \implies m = 0, -4$	M1	For attempt to solve correct auxiliary equation	
			$CF = A + Be^{-4x}$	A1	For correct CF	
			$PI y = p e^{2x} \implies 4p + 8p = 12$	B1	For PI of correct form seen	Beware poor use of pxe ^{2x}
				M1	For differentiating PI and substituting	Scores maximum
			$\Rightarrow p=1$	A1	For correct p	of M1 A1 B0 M1
			$GS y = A + Be^{-4x} + e^{2x}$	B1 FT	For using GS = CF + PI with 2 arbitrary constants in GS and none in PI	A0 B0
			METHOD 2	[6]		
			Integrating $\Rightarrow \frac{dy}{dx} + 4y = 6e^{2x} + c$	M1 B1	For attempt to integrate equation For $+c$ included	
			IF $e^{4x} \Rightarrow \frac{d}{dx} \left(y e^{4x} \right) = 6e^{6x} + c e^{4x}$	B1√ M1	For correct IF. f.t. from their DE For multiplying through by their IF and attempting to integrate	
			$\Rightarrow y e^{4x} = e^{6x} + \frac{1}{4}c e^{4x} + B$	A1	For correct integration both sides, including $+B$	
			$\Rightarrow y = e^{2x} + A + Be^{-4x}$	A1	For correct solution	Must include "y ="
6	(ii)		$\frac{\mathrm{d}y}{\mathrm{d}x} = -4B\mathrm{e}^{-4x} + 2\mathrm{e}^{2x}$	M1	For differentiating "their GS" with 2 arbitrary constants and substituting values to obtain an equation	If "their CF" is $(A+Bx)e^{-4x}$
			$\left(0, \frac{dy}{dx} = 6\right) \Rightarrow -4B + 2 = 6 \Rightarrow B = -1$	A1	For correct B	can score max of M1 A0 B1 A0
			$(y \approx e^{2x} \Rightarrow) A = 0$	B1	For correct A and consistent with" their GS"	
			$\Rightarrow y = -e^{-4x} + e^{2x}$	A1	For correct equation www	
				[4]		
7	(i)		$\mathbf{m} = \mathbf{v} + \frac{1}{2}(\mathbf{w} - \mathbf{v}) \Longrightarrow$	M1	For using vector triangle, or equivalent, for M	$\overrightarrow{UM} = \overrightarrow{UV} + \overrightarrow{VM}$
						$= (\mathbf{v} - \mathbf{u}) + \frac{1}{2}(\mathbf{w} - \mathbf{v})$
			$\overrightarrow{UM} = \mathbf{v} + \frac{1}{2}(\mathbf{w} - \mathbf{v}) - \mathbf{u} = \frac{1}{2}(\mathbf{v} + \mathbf{w} - 2\mathbf{u})$	A1	For correct expression AG	
			2\		SR Allow use of ratio theorem	Minimum
				[2]		$-\mathbf{u} + \frac{1}{2}(\mathbf{v} + \mathbf{w})$

C	uestio	n	Answer	Marks	Guidance	
7	(ii)		METHOD 1 (first 3 marks)			
			\overrightarrow{UM} is $\mathbf{r} = \mathbf{u} + \frac{1}{2}t(\mathbf{v} + \mathbf{w} - 2\mathbf{u})$	M1*	For equation of <i>UM</i>	
				M1*	For attempt to find a suitable value of <i>t</i>	
			$t = \frac{2}{3} \implies \mathbf{u} + \frac{1}{3} (\mathbf{v} + \mathbf{w} - 2\mathbf{u}) = \frac{1}{3} (\mathbf{u} + \mathbf{v} + \mathbf{w})$	A1	For $t = \frac{2}{3}$ and G obtained AG	
			METHOD 2 (first 3 marks)			
			$\overrightarrow{UG} = \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) - \mathbf{u} = \frac{1}{3}(\mathbf{v} + \mathbf{w} - 2\mathbf{u})$	M1* M1*	For finding directions of <i>UG</i> or <i>MG</i> For comparing with <i>UM</i>	
			OR	IVII	1 of comparing with Ow	
			$\overrightarrow{MG} = \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) - \frac{1}{2}(\mathbf{v} + \mathbf{w}) = -\frac{1}{6}(\mathbf{v} + \mathbf{w} - 2\mathbf{u})$			
			$\Rightarrow U, G, M \text{ collinear}$	A1	For showing G lies on UM AG	
			By symmetry of \overrightarrow{OG} in \mathbf{u} , \mathbf{v} , \mathbf{w}	В1	For use of symmetry, or by repeating method for UM twice more.	
			G also lies on VN, WP	B1dep	For complete reasoning to AG	
			\Rightarrow UM, VN, WP intersect at G	* [5]		
7	(iii)		Ting in 1(-,-,-)(-,	[5]		
,	(111)		Line is $\mathbf{r} = \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) + t(\mathbf{u} - \mathbf{v}) \times (\mathbf{u} - \mathbf{w})$ (etc)	B1	For $r = \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) + t \times$ "any vector"	
				B1	For a correct n , using any 2 of $\pm (\mathbf{u} - \mathbf{v})$, $\pm (\mathbf{v} - \mathbf{w})$, $\pm (\mathbf{w} - \mathbf{u})$	Allow
						$\overrightarrow{UV} \times \overrightarrow{VW}$ or
				[2]		similar

Q	uestion	Answer	Marks	Guidance	
7	(iv)	METHOD 1 $\mathbf{n} = [1, 0, -1] \times [0, 1, -1] \text{ (etc)} = k[1, 1, 1]$	M1*	For attempt to find n	May see use of $ p.n-d $
		UVW is $\mathbf{r} \cdot \mathbf{n} = [1, 0, 0] \cdot [1, 1, 1] = 1$	M1dep	For substituting a point	n
		$\Rightarrow d = \frac{1}{\sqrt{3}}$	A1	For correct d	
		METHOD 2 UVW is $x+y+z=1$ (from given u , v , w) $\Rightarrow d = \frac{1}{\sqrt{3}}$	[3] M2 A1	For attempt to find cartesian equation For correct d	
		METHOD 3 $\overrightarrow{OG} = \frac{1}{3} (\mathbf{u} + \mathbf{v} + \mathbf{w})$ $\Rightarrow OG = \sqrt{\frac{1}{9} + \frac{1}{9} + \frac{1}{9}}$	M1* M1dep	For stating or implying $\left \overrightarrow{OG}\right $ is d	
		$\Rightarrow OG = \sqrt{\frac{1}{9} + \frac{1}{9} + \frac{1}{9}}$ $\Rightarrow d = \frac{1}{\sqrt{3}}$	A1	For finding magnitude For correct <i>d</i>	

Q	uestio	n	Answer	Marks	Guidance	
8	(i)		For R , $\cos^2 \theta + \sin^2 \theta = 1 \implies \text{ad-bc} = 1 \implies R \subset M$)	B1	For showing $R \subset M$	
			$R(\theta)R(\phi) = R(\theta + \phi)$ and hence closed, since	M1	For multiplying 2 distinct elements	
			$\cos\theta\cos\phi - \sin\theta\sin\phi = \cos(\theta + \phi)$ and	A 1	E 10 PONO D	M
			$\pm (\cos\theta\sin\phi + \sin\theta\cos\phi) = \pm\sin(\theta + \phi)$	A1	For obtaining $R(\theta)R(\phi) \in R$	Must demonstrate use of compound angles or explain rotations.
			Identity $\theta = 0 \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in R$	B1	For identity element related to $\theta = 0$	
			Inverse $R(-\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$	B1	For inverse element	
			$= \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix}$	B1	converted to form of elements of R	
				[6]		
			SR For use of $(a,b \in R \Rightarrow ab^{-1} \in R) \Leftrightarrow R$ is a			
			subgroup of M			
			For R , $\cos^2 \theta + \sin^2 \theta = 1 \implies R \subset M$	B1	For showing $R \subset M$	
			$R(\theta)R(\phi)^{-1} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos(-\phi) & -\sin(-\phi) \\ \sin(-\phi) & \cos(-\phi) \end{pmatrix}$	B1	For considering $R(\theta)R(\phi)^{-1}$	
			$(\sin\theta - \cos\theta)(\sin(-\phi) - \cos(-\phi))$	DТ	For correct inverse	
				M1 A1	For multiplying elements	
			$= \begin{pmatrix} \cos(\theta - \phi) & -\sin(\theta - \phi) \\ \sin(\theta - \phi) & \cos(\theta - \phi) \end{pmatrix} \in R$	AI	For correct product	
			Set is non-empty	B1	Can be implied by identity element related to $\theta = 0$	

	Question	Answer	Marks	Guidance	
8	(ii)	For $\theta = \frac{1}{3}k\pi$ elements are	B1	For $\theta = \frac{1}{3}\pi$ soi	Allow degrees instead of radians.
		$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}, \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix}, $	M1	For using "their θ " in $\begin{pmatrix} \cos k\theta & \sin k\theta \\ -\sin k\theta & \cos k\theta \end{pmatrix}$ for at least 2 values of k , or lists all 6 values of θ	
		$ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -\frac{1}{2} & \frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & \frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix} $	A1 A1 A1 [5]	For identity and one other element other than (-I) For 2 more elements For all 6 elements correct	

C	uesti	ion	Answer	Marks	Guid	ance
1	(i)		$\cos \theta = \frac{\begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}}{\sqrt{1^2 + 2^2 + 5^2} \sqrt{2^2 + (-1)^2 + 3^2}} = \frac{15}{\sqrt{30}\sqrt{14}}$	M1 A1	Accept unsimplified	
			$\theta = 0.750 \text{ or } 43.0^{\circ}$	A1 [3]	If zero, then $sc1$ for $n_1 \cdot n_2 = 15$ seen	
1	(ii)		$ \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} \times \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 11 \\ 7 \\ -5 \end{pmatrix} $	M1 A1		M1 requires evidence of method for cross product or at least 2 correct values calculated
			(eg) $x = 0 \Rightarrow 2y + 5z = 12, -y + 3z = 5 \Rightarrow y = 1, z = 2$	M1		or any valid point e.g.(-11/7, 0, 19/7) (22/5, 19/5, 0)
			$\mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 11 \\ 7 \\ -5 \end{pmatrix}$	A1	oe vector form	Must have full equation including ' r ='
			Alternative: Find one point Find a second point and vector between points	[4] M1 M1		
			multiple of $\begin{bmatrix} 7 \\ -5 \end{bmatrix}$ $\mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 11 \\ 7 \\ -5 \end{pmatrix}$	A1		

C	uestion	Answer	Marks	Guid	lance
		Alternative: Solve simultaneously	M1	to at least expressions for x,y,z parametrically, or two relationship	
		Point found	A1	between 2 variables.	
		Direction found	A1		
		$\begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 11 \end{pmatrix}$			
		$\mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 11 \\ 7 \\ -5 \end{pmatrix}$	A1		
2	(i)	identity 0 + 0i	B1	Or '0'	
		order 25	B1		
			[2]		
2	(ii)	3+i	B1		
2	(iii)		[1]		
	(111)	5(a+bi) = 5a + 5bi = 0 + 0i	M1	Shows 5 times any element equals e	
		$\frac{3(u+b1)-3u+3b1-6+61}{2}$ every non-zero element has order 5 or 25	M1	Attempt to show that order $\neq 2,3,4$	Must consider all(non-zero) elements
		So order is 5	A1	Argument is convincing, exhaustive	, ,
_		50 order is 5	[3]	and conclusive.	
3		$\frac{\mathrm{d}y}{\mathrm{d}x} - 3\frac{y}{x} = x^3 \mathrm{e}^{2x}$	M1	Divide by <i>x</i>	
		$I = \exp\left(\int -\frac{3}{x} \mathrm{d}x\right) = \mathrm{e}^{-3\ln x}$	M1		
		$=x^{-3}$	A1		
		$x^{-3} \frac{dy}{dx} - 3x^{-4} y = e^{2x}$	M1	Multiply and recognise derivative	
		$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{-3}y\right) = \mathrm{e}^{2x}$	M1	Integrate	
		$x^{-3}y = \frac{1}{2}e^{2x} + A$ $x = 1, y = 0 \Rightarrow A = -\frac{1}{2}e^{2}$	A1		
			M1	Use condition	
		$y = \frac{1}{2}x^3\left(e^{2x} - e^2\right)$	A1		
			[8]		

C	uest	ion	Answer	Marks	Guid	ance
4	(i)		$ \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \times \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 \\ -2 \\ -14 \end{pmatrix} = -2 \begin{pmatrix} 2 \\ 1 \\ 7 \end{pmatrix} $	M1 A1	Or any multiple	
			$ \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} $	B1	Or negative	Or use of $n.(a_1 + pb_1 + kn) = n.(a_2 + qb_2)$ B1 followed by attempt to calculate magnitude of kn M1
			shortest distance = $\frac{\begin{vmatrix} 2 \\ -2 \\ 0 \end{vmatrix} \cdot \begin{vmatrix} 2 \\ 1 \\ 7 \end{vmatrix}}{\sqrt{2^2 + 1^2 + 7^2}} = \frac{2}{\sqrt{54}}$ oe	M1 A1 [5]	Component of their vector in their direction	magnitude of kill 1411
4	(ii)		$2x + y + 7z = \dots$ $\dots 11$	B1ft B1 dep	ft from 4(i) only if 1 st M1 mark gained If zero, then sc 1 for any correct vector equation.	
5	(i)		$1, e^{\frac{2}{5}\pi i}, e^{\frac{4}{5}\pi i}, e^{\frac{6}{5}\pi i}, e^{\frac{8}{5}\pi i}$ oe polar form	M1	Attempt roots	e.g. gives roots in an incorrect form.
				A1 [2]		

C	uesti	on	Answer	Marks	Guida	ance
5	(ii)		$z^{5} = (z+1)^{5} = z^{5} + 5z^{4} + 10z^{3} + 10z^{2} + 5z + 1$	M1		
			$\Leftrightarrow 5z^4 + 10z^3 + 10z^2 + 5z + 1 = 0$	A1		
			so $z+1=ze^{\frac{2k}{5}\pi i}$, $k=0,1,2,3,4$	M1		
			k = 0 no solution	B1	soi	
			$1 = z \left(e^{\frac{2k}{5}\pi i} - 1 \right)$			
			$z = \frac{1}{e^{\frac{2k}{5}\pi i} - 1}$, $k = 1, 2, 3, 4$	A1	If B0, then give A1 ft for correct solution plus $k = 0$	
				[5]	Sciulon pius ii	
6	(i)		PI: $y = ax \cos 2x + bx \sin 2x$			
			$\frac{\mathrm{d}y}{\mathrm{d}x} = a\cos 2x - 2ax\sin 2x + b\sin 2x + 2bx\cos 2x$	B1	For correct $\frac{dy}{dx}$ or better	
			$\frac{d^{2}y}{dx^{2}} = -4a\sin 2x - 4ax\cos 2x + 4b\cos 2x - 4bx\sin 2x$			
			in DE:			
			$-4a\sin 2x - 4ax\cos 2x + 4b\cos 2x - 4bx\sin 2x$	M1	Differentiate twice and substitute	
			$+4(ax\cos 2x + bx\sin 2x)$	M1		
			compare coefficients: $-4a = 1$, $4b = 0$ $\Rightarrow a = -\frac{1}{4}$, $b = 0$	A1		
			7		For correct auxiliary equation and	
			AE: $\lambda^2 + 4 = 0$	M1	attempt to solve	
			$\lambda = \pm 2i$			
			CF: $A\cos 2x + B\sin 2x$	A1	oe form	
			GS: $y = \left(A - \frac{1}{4}x\right)\cos 2x + B\sin 2x$	A1ft	Must be real and contain 2 unknowns	
				[7]		

C	Questi	ion	Answer	Marks	Guidance
6	(ii)		oscillations	B1	oe (accept sketch) dep consistent with 6(i)
			unbounded	B1	oe (accept sketch) dep consistent with 6(i) If zero, then sc1 for recognition that xcos2x term becomes dominant
				[2]	
6	(iii)		If $k \neq 2$ then PI $y = \alpha \cos kx + \beta \sin kx$	B1	
			So bounded oscillations	B1	oe (accept sketch)
				[2]	
7	(i)	(a)	$e^{i\theta} + e^{2i\theta} + \dots + e^{10i\theta} = \frac{e^{i\theta} \left(\left(e^{i\theta} \right)^{10} - 1 \right)}{e^{i\theta} - 1}$	M1 A1	Sum of a GP
			$= \frac{e^{\frac{1}{2}i\theta} \left(e^{10i\theta} - 1 \right)}{e^{\frac{1}{2}i\theta} - e^{-\frac{1}{2}i\theta}}$	M1	
			$=\frac{e^{\frac{1}{2}i\theta}\left(e^{10i\theta}-1\right)}{2i\sin\left(\frac{1}{2}\theta\right)}$	A1	AG
_	(1)	(1)	0.0	[4]	
7	(i)	(b)	$\theta = 2n\pi \Rightarrow \text{sum} = 10$	B1	
				[1]	

C	uest	ion	Answer	Marks	Guid	ance
7	(ii)		$\cos\theta + \cos 2\theta + \dots + \cos 10\theta = \operatorname{Re}\left(\frac{e^{\frac{1}{2}i\theta}\left(e^{10i\theta} - 1\right)}{2i\sin\left(\frac{1}{2}\theta\right)}\right)$	M1	Take real parts	
			$=\frac{\operatorname{Re}\left(-\mathrm{i}\mathrm{e}^{\frac{1}{2}\mathrm{i}\theta}\left(\mathrm{e}^{10\mathrm{i}\theta}-1\right)\right)}{2\sin\left(\frac{1}{2}\theta\right)}=\frac{\operatorname{Re}\left(-\mathrm{i}\mathrm{e}^{\frac{2\mathrm{i}}{2}\mathrm{i}\theta}+\mathrm{i}\mathrm{e}^{\frac{1}{2}\mathrm{i}\theta}\right)}{2\sin\left(\frac{1}{2}\theta\right)}$	M1	Manipulate expression	Must at least make genuine progress in sorting real part of numerator, or in converting numerator to trig terms.
			$=\frac{\sin\left(\frac{21}{2}\theta\right)-\sin\left(\frac{1}{2}\theta\right)}{2\sin\left(\frac{1}{2}\theta\right)}$			
			$=\frac{\sin\left(\frac{21}{2}\theta\right)}{2\sin\left(\frac{1}{2}\theta\right)}-\frac{1}{2}$	A1	AG	
				[3]		
7	(iii)		$\cos\frac{1}{11}\pi + \cos\frac{2}{11}\pi + \dots + \cos\frac{10}{11}\pi = \frac{\sin\left(\frac{21}{22}\pi\right)}{2\sin\left(\frac{1}{22}\pi\right)} - \frac{1}{2}$	M1		For second M1, must convince that solution is exact and not simply from calculator.
			But $\sin \frac{21}{22} \pi = \sin \left(\pi - \frac{21}{22} \pi \right) = \sin \frac{1}{22} \pi$	M1		
			So RHS = $\frac{1}{2} - \frac{1}{2} = 0$, so $\frac{1}{11}\pi$ is a root	A1	AG	
			Using $\sin(2\pi + x) = \sin x$ gives			
			$2\pi + \frac{1}{2}\theta = \frac{21}{2}\theta \Rightarrow \theta = \frac{1}{5}\pi$	A1		
			•	[4]		

	(0)	1				
8	(i)		$wa^2 = waa = a^3wa = a^3a^3w$	M1	Use $wa = a^3 w$ to simplify	
			$=a^4a^2w=ea^2w$	B1	Use $a^4 = e$ (oe) in either proof	
			$=a^2w$	A1	Complete argument AG	
			Either result $\Rightarrow wa^3 = a^3wa^2$	M1		
			$=a^3a^2w$	M1		
			= eaw = aw	A1	AG	
				[6]		
8	(ii)		$\left(aw\right)^2 = \left(aw\right)\left(aw\right)$	M1	for equating any of elements	
			$= awwa^3 = aea^3 = a^4 = e$ so order 2	1V1 1	for squaring any of elements	
				M1	for attempt to simplify to e	
			$(a^2w)(a^2w) = a^2wwa^2 = a^2ea^2 = a^4 = e$ so order 2	A1	for at least two squared elements shown equal to e	
			$(a^3w)(a^3w) = a^3wwa = a^3ea = a^4 = e$ so order 2	A1	for complete argument	
				[4]		
8	(iii)		$\{e,a^2,w,a^2w\}$	B1		Condone equivalents
			$\{e, a^2, aw, a^3w\}$	B1		
				M1	Consider orders	
			a^2, w, aw, a^2w, a^3w all of order 2		Or considers form {e, x, y, xy} where	
					x, y order 2	
			so not cyclic as no element of order 4 in either	A1	Dep on both groups correct	Condone 'no generator' or 'Klein (V) group' in place of 'no element of order 4'
				[4]		order 1

	Questic	on	Answer	Marks	G	uidance
1	(i)		vectors in plane: two of $\begin{pmatrix} -4\\4\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\6\\4 \end{pmatrix} = 2 \begin{pmatrix} 0\\3\\2 \end{pmatrix}$, $\begin{pmatrix} 4\\2\\3 \end{pmatrix}$	M1	Differences between two pairs	Any multiple
			$\mathbf{r} = \begin{pmatrix} 1 \\ 6 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$	A1	Aef of parametric equation	Must have " $\mathbf{r} = \dots$ "
1	(ii)		$ \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} \times \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \\ -12 \end{pmatrix} $	[2] M1 A1	Calculate vector product or multiple	M1 can be awarded where vector product has method shown or only one term wrong
			$ \left(\mathbf{r} - \begin{pmatrix} 1 \\ 6 \\ 2 \end{pmatrix} \right) \cdot \begin{pmatrix} 5 \\ 8 \\ -12 \end{pmatrix} = 0 $	M1		Or Cartesian form = d with attempt to compute d
			5x + 8y - 12z = 29	A1	Aef of cartesian equation, isw.	
				[4]		
			Alternate method			
				M1 A1 M1A1	EITHER <i>x</i> , <i>y</i> , <i>z</i> in parametric form both parameters in terms of e.g. <i>x</i> , <i>y</i> substitute into parametric form of <i>z</i>	
				M1 A1 M1 A1	OR <i>x</i> , <i>y</i> , <i>z</i> in parametric form 2 equations in <i>x</i> , <i>y</i> , <i>z</i> and one parameter eliminate parameter	

	Duestion	n Answer	Marks	G	uidance
2	(i)	1 3 5 7 1 1 3 5 7 3 3 1 7 5 5 5 7 1 3	B2	-1 each error	
		From table clearly closed	B1		Must be clear they are referring to tabulated results
		1 is identity	B1		
		$3^{-1} \equiv 3, 5^{-1} \equiv 5, 7^{-1} \equiv 7 \pmod{8}$	B1		Or "1 appears in every row"
			[5]	Superfluous fact/s gets -1	
2	(ii)	1 has order 1 and 3, 5, 7 all have order 2	B1		
			[1]		
2	(iii)	$\{1,3\},\{1,5\},\{1,7\} \text{ (and } \{1\})$	B1 [1]	All correct, no extras	Allow {1} included or omitted
2	(iv)	in $H 3^2 \equiv 9 \pmod{10}$ so 3 not order 2	M1	Shows and states that 3 or that 7 is not order 2 (or is order 4)	
		no element of order > 2 in G so not isomorphic	A1	Completely correct reasoning	
			[2]	Or, if zero, then SC1 for merely stating comparable orders and then saying that "orders don't correspond, so not isomorphic"	
				Or table for H with saying "not all elements self inverse, so not isomorphic"	

Q	uestion	Answer	Marks	G	uidance
3		$u = y^3 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	M1		Or $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}u^{-\frac{2}{3}}\frac{\mathrm{d}u}{\mathrm{d}x}$
		in DE gives $x \frac{du}{dx} + 2u = \frac{\cos x}{x}$	A1		
		$\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{2}{x}u = \frac{\cos x}{x^2}$	B1	Divide	Both sides
		$I = \exp\left(\int \frac{2}{x} dx\right) = e^{2\ln x}$	M1	Correctly integrates	Must have form $\frac{du}{dx} + f(x)u = g(x)$
		$=x^2$	A1		Can be implied by subsequent work
		$x^2 \frac{\mathrm{d}u}{\mathrm{d}x} + 2xu = \cos x$			
		$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2u\right) = \cos x$			
		$x^2 u = \sin x (+A)$	M1	Integrate	
		$u = \frac{\sin x + A}{x^2}$	A1	Or gives GS in implicit form	Must include constant at this stage
		$y = \left(\frac{\sin x + A}{x^2}\right)^{\frac{1}{3}}$	A1		
			[8]		

	Questic	on	Answer	Marks	G	uidance
4	(i)		Sketch	B1		Must have axes, A shown 3 across and either scale (or co-ordinates) with B in rough position, or angle and distance on argand diagram. No inconsistencies
			$OA = 3 = 3$, $OB = \left 3e^{\frac{1}{3}\pi i} \right = 3$ and $\angle BOA = \frac{1}{3}\pi$ hence $\triangle OAB$ equilateral	M1 A1 [3]	Can be seen on diagram	Alt. Attempts AB or second angle
4	(ii)		$3e^{-\frac{1}{3}\pi i}$	M1A1	Or $3e^{\frac{5}{3}\pi i}$. Isw M1 for evidence they are considering BA, or for $\frac{3}{2} - \frac{3}{2}\sqrt{3}i$	For full marks can use CiS form, or clear polar co-ordinates, in radians. Not C-iS
4	(iii)		$\left(3 - 3e^{\frac{1}{3}\pi i}\right)^{5} = 3^{5} e^{-\frac{5}{3}\pi i}$ $= 243\left(\cos\frac{5}{3}\pi - i\sin\frac{5}{3}\pi\right)$ $= \frac{243}{2} + \frac{243}{2}\sqrt{3}i$	M1 A1ft B1 [3]	For mod^5 and $\text{arg} \times 5$ aef	"Hence" so must use 'their $3e^{-\frac{1}{3}\pi i}$, Condone use of "121.5".

Ç	uestion	Answer	Marks	G	uidance
5		AE: $\lambda^2 + 2\lambda + 5 = 0$	M1		
		$\lambda = -1 \pm 2i$	A1		
		CF: $e^{-x} (A\cos 2x + B\sin 2x)$	A1ft		Or $Ae^{-x}\cos(2x+\alpha)$ Must be in real
		PI: $y = ae^{-x}$	B1		form If PI $y = axe^{-x}$, then max of M1,A1,A1, B0,M1,A0,A0 (since cannot be consistent) M1, M1, A1.
		$ae^{-x} - 2ae^{-x} + 5ae^{-x} = e^{-x}$ $4a = 1$	M1	Differentiate & substitute	Must have a constant in "their PI"
		$a=\frac{1}{4}$	A1		
		GS: $y = e^{-x} \left(\frac{1}{4} + A \cos 2x + B \sin 2x \right)$	A1ft		Must have "y ="
		$\frac{dy}{dx} = -e^{-x} \left(\frac{1}{4} + A\cos 2x + B\sin 2x \right)$ $+e^{-x} \left(-2A\sin 2x + 2B\cos 2x \right)$	M1*	Differentiate their GS of form $y = e^{-x} (P + A\cos nx + B\sin nx)$ where <i>P</i> is constant or linear term, <i>n</i> not 0 or 1	Allow one error
		$x = 0, \frac{dy}{dx} = 0 \Rightarrow -\left(\frac{1}{4} + A\right) + 2B = 0$ $x = 0, y = 0 \Rightarrow \frac{1}{4} + A = 0$	*M1	Use conditions	But M0 if leads to solution of $y = 0$
		$A = -\frac{1}{4}, B = 0$	A1ft	From their GS	
		$y = \frac{1}{4}e^{-x}(1-\cos 2x)$	A1 [11]		Must have ' $y =$ ' and be in real form
6	(i)	x = 2t + 1, $y = 5t - 1$, $z = t + 2$	B1	Parameterise	or B1 for y and z correctly in terms of x e.g. $2y = 5x - 7$, $2z = x + 3$
		(2t+1)+2(5t-1)-2(t+2)=5		Substitute into plane	Then M1 for full simultaneous equations method.
		$\Rightarrow 10t = 10 \Rightarrow t = 1$ Intersect at (3, 4, 3)	M1 A1 [3]	Solve cao	Accept vector form

(Questic	on	Answer	Marks	Gı	ıidance
6	(ii)		$\cos\left(\frac{1}{2}\pi - \theta\right) = \frac{\begin{vmatrix} 2\\5\\1 \end{vmatrix} \cdot \begin{vmatrix} 1\\2\\-2 \end{vmatrix}}{\begin{vmatrix} 2\\5\\1 \end{vmatrix} \begin{vmatrix} 1\\2\\-2 \end{vmatrix}} = \frac{10}{3\sqrt{30}}$ $\theta = 0.654$	M1A1 A1 [3]	or 37.5°	Attempt to find angle or its complement
6	(iii)		If <i>P</i> is point of intersection and <i>Q</i> is required point, $\overrightarrow{PQ} = \lambda \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix} \text{ so } \sin \theta = \frac{2}{PQ} = \frac{2}{ \lambda \sqrt{30}}$	M1*	or $\overrightarrow{PQ} \cdot \hat{\mathbf{n}} = \pm 2$ where $\mathbf{n} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$	Use \overrightarrow{PQ} with right angled triangle or consider component of \overrightarrow{PQ} in direction of normal vector.
			$\frac{10}{3\sqrt{30}} = \frac{2}{ \lambda \sqrt{30}}$	M1		Valid method to set up equation in λ alone.
			$\lambda = \pm \frac{3}{5}$	A1		(May work from general point on original equation)
			points have position vectors $\begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix} \pm \frac{3}{5} \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$	*M1	Dep on 1 st M1	
			points at (1.8, 1, 2.4) and (4.2, 7, 3.6)	A1	cao	
			Alternative:			
			Distance = $\frac{\left 2t+1+2(5t-1)-2(t+2)-5\right }{\sqrt{1^2+2^2+2^2}} = 2$	M1* A1		Zero if formula used without substitution in of parametric form.
			$\Rightarrow t = 0.4 \text{ or } 1.6$ (1.8, 1, 2.4) and (4.2, 7, 3.6)	*M1 A1 A1 [5]	Solve At least one value found	

(Questi	on	Answer	Marks	G	uidance
7	(i)		$(ab)^6 = ababab = a^6b^6$ as commutative	M1	Must give reason	Some demonstration that they understand commutativity
			$= \left(a^2\right)^3 \left(b^3\right)^2 = e^3 e^2 = e$	A1	Using orders of a and b	
			So ab has order 1, 2, 3, or 6 $(b \neq a \Rightarrow ab \neq a^2 \Rightarrow ab \neq e \text{ so } ab \text{ not order 1})$ $(ab)^2 = a^2b^2 = eb^2 = b^2 \text{ and } b \text{ not order 2},$ so ab not order 2 $(ab)^3 = a^3b^3 = aa^2e = aee = a \neq e$, so ab not order 3	M1	Consider other cases	Condone absence of this line Insufficient to merely have simplified all $(ab)^n$
			(So must be order 6)	A1 [4]	AG Complete argument	
7	(ii)		ac has order 18 18 is LCM of 2 and 9, (so we can use a similar argument to part (i)) So as G has an element of order 18 it must be cyclic.	B1 M1 A1	or explicit consideration of other cases AG Complete argument	Or abc or generator
8	(i)		$\cos 5\theta + i \sin 5\theta = (\cos \theta + i \sin \theta)^{5}$ $= c^{5} + 5ic^{4}s - 10c^{3}s^{2} - 10ic^{2}s^{3} + 5cs^{4} + is^{5}$	B1 M1	Or $\cos 5\theta = re\{(\cos \theta + i \sin \theta)^5\}$	No more than 1 error, can be unsimplified
			$\cos 5\theta = c^5 - 10c^3s^2 + 5cs^4$	M1	Take real parts	
			$= c^{5} - 10c^{3} (1 - c^{2}) + 5c (1 - c^{2})^{2}$ $= c^{5} - 10c^{3} + 10c^{5} + 5c - 10c^{3} + 5c^{5}$	M1		
			$\cos 5\theta = 16c^5 - 20c^3 + 5c$	A1 [5]	AG	

Question	Answer	Marks		Guidance
8 (ii)	Multiplying by x gives $16x^5 - 20x^3 + 5x = 0$			Hence, so no marks for using quadratic at this stage.
	letting $x = \cos \alpha$ gives $\cos 5\alpha = 0$	M1		
	hence $5\alpha = \frac{1}{2}\pi, \frac{3}{2}\pi, \frac{5}{2}\pi, \frac{7}{2}\pi, \frac{9}{2}\pi$	A1		
	$\alpha = \frac{1}{10}\pi, \frac{3}{10}\pi, \frac{5}{10}\pi, \frac{7}{10}\pi, \frac{9}{10}\pi$			
	$\cos \frac{5}{10}\pi = 0$ which is not a root	A1		
	so roots $x = \cos \frac{1}{10} \pi$, $\cos \frac{3}{10} \pi$, $\cos \frac{7}{10} \pi$, $\cos \frac{9}{10} \pi$	A1		
		[4]		
8 (iii)	$16x^4 - 20x^2 + 5 = 0 \Leftrightarrow x^2 = \frac{20 \pm \sqrt{80}}{32}$	B1		Can be gained if seen in (ii)
	cos decreases between 0 and π so $\cos \frac{1}{10}\pi$ is			
	greatest root	M1		
	so $\cos \frac{1}{10}\pi = \sqrt{\frac{20 + \sqrt{80}}{32}} = \sqrt{\frac{5 + \sqrt{5}}{8}}$	A1	Dep on full marks in (ii)	
		[3]		

Question	Answer	Marks	Guida	nnce
1 (i)	$ \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \times \begin{pmatrix} 3\\5\\2 \end{pmatrix} = \begin{pmatrix} 7\\-7\\7 \end{pmatrix} = 7\begin{pmatrix} 1\\-1\\1 \end{pmatrix} $	M1 A1		M1 requires evidence of method for cross product or at least 2 correct values calculated
	(eg) $z = 0 \Rightarrow 2x + y = 4, 3x + 5y = 13 \Rightarrow x = 1, y = 2$	M1		or any valid point e.g.(0, 3, -1), (3, 0, 2)
	$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	A1	oe vector form	Must have full equation including 'r ='
	Alternative: Find one point	M1		
	Find a second point and vector between points	M1		
	multiple of $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	A1		
	$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	A1		
	Alternative: Solve simultaneously	M1	to at least expressions for x,y,z parametrically, or two relationship between 2 variables.	
		M1		
	Point and direction found	A1		
	$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	A1		
		[4]		

Q	uestion	Answer	Marks	Guida	ance
1	(ii)	$\frac{ 2 \times 2 + 5 - 2 - 4 }{\sqrt{2^2 + 1^2 + 1^2}} = \frac{7}{\sqrt{6}}$	M1 A1	Condone lack of absolute signs for M1 oe surd form, isw	2.86 with no workings scores M1
		Alternative: find parameter for perpendicular meets plane and use to find distance	M1	For complete method with calculation errors	look for $\lambda = -7/6$
			[2]		
2		$u = y^2 \Rightarrow \frac{du}{dx} = 2y\frac{dy}{dx}$	M1	Correctly finds	$\operatorname{Or} \frac{dy}{dx} = \frac{1}{2}u^{-\frac{1}{2}}\frac{du}{dx}$
		so DE $\Rightarrow 2y \frac{dy}{dx} - 4y^2 = 2e^x$	M1	or for complete unsimplified substitution	
		$\Rightarrow \frac{du}{dx} - 4u = 2e^{x}$ $I = \exp \int -4 dx = e^{-4x}$	A1		Can be implied by next A1
		$I = \exp \int -4 \mathrm{d}x = \mathrm{e}^{-4x}$	A1ft		Must have form $\frac{du}{dx} + f(x)u = g(x)$ for this mark and any further marks Can be implied by subsequent work
		$e^{-4x} \frac{du}{dx} - 4e^{-4x} u = 2e^{-3x}$	M1*	Multiples through by IF of form e ^{kx} , simplifying RHS	r
		$u e^{-4x} = -\frac{2}{3}e^{-3x}(+A)$	*M1dep*	Integrates	
		$u = -\frac{2}{3}e^x + Ae^{4x}$	M1dep *	Rearranges to make u or y ² the subject	No more than 1 numerical error at this step
		$y = \sqrt{-\frac{2}{3}e^x + Ae^{4x}}$	A1	Cao	ignore use of '±'
		Alternative from 4 th mark to 6 th mark			
		CF: $(u=) Ae^{4x}$	A1		
		PI: $u = ke^x$, $\frac{du}{dx} = ke^x$	M1*	PI chosen & differentiated correctly	
		$ke^x - 4ke^x = 2e^x, k = -\frac{2}{3}$	M1 dep*	Substitutes and solves	
			[8]		

4727 Mark Scheme June 2014

Ç	Question	n Answer	Marks	Guid	ance
3	(i)	$z^6 = 1 \Rightarrow z = e^{2k\pi i/6}$	M1		
		k = 0, 1, 2, 3, 4, 5	A1	Oe exactly 6 roots	accept roots 1, -1 given as integers.
		Diagram	B1	6 roots in right quadrant,	
			В1	correct angles and moduli	as evidenced by labels, circles, or accurate diagram, or by co-ordinates
			[4]		
3	(ii)	$(1+i)^{6} = \left(\sqrt{2} e^{\frac{1}{4}\pi i}\right)^{6}$ $8e^{\frac{6}{4}\pi i}$	M1	Attempts modulus-argument form, getting at least 1 correct	
		$8e^{\frac{6}{4}\pi i}$	M1	for (mod) ⁶ and arg x 6	
		=-8i	A1	ag	complete argument including start line
		Alternative:			
		$(1+i)^6 = 1 + 6i + 15i^2 + 20i^3 + 15i^4 + 6i^5 + i^6$	M1		
		=1+6i-15-20i+15+6i-1	M1	no more than 1 term wrong	Sc 2 for only lines 2 & 3correct
		=-8i	A1	ag	
		Alternative: $(1+i)^2 = 2i$	M1		
		$(1+i)^6 = \left(2i\right)^3$	M1		
		=-8i	A1 [3]	ag	

Question		Answer	Marks	Guidance	
3	(iii)	$z^6 = -8i \Rightarrow z = (1+i)e^{2k\pi i/6}$	M1		
		$=\sqrt{2}e^{i\frac{\pi}{4}}e^{2k\pi i/6}$	M1		
		$\sqrt{2} e^{i\pi(1/4+k/3)}, k = 0,1,2,3,4,5$	A1	or equivalent k	
		Alternative: $z^{6} = 8e^{i\pi(\frac{3}{2} + 2k)}$	M1		
		$\sqrt{2} e^{i\pi(1/4+k/3)}, k = 0,1,2,3,4,5$	M1 A1 [3]		or equivalent: e.g. $\sqrt{2} e^{i\pi(-1/12+k/3)}$ accept unsimplified modulus

4727 Mark Scheme June 2014

	Question	n Answer	Marks	Guidance	
4	(i)	element (1) 3 7 9 11 13 17 19 inverse (1) 7 3 9 11 17 13 19	B1 B1 B1 [3]	2 or more 4 or more all 7 correct	Ignore 1
4	(ii)	(1 has order 1) 9,11,19 have order 2 $3^{2} = 9 \Rightarrow 3^{4} = 1 \text{ so order 4}$ similarly 7,13,17 order 4	M1 B1	Correctly identifies order of all elements justifies order for at least 1 element of order 4	Allow one error must show workings towards a^4 for demonstration that these elements are order 4` condens "no generator" in place of
		no element of order 8 so not cyclic	[3]	WWW	condone "no generator" in place of "no element or order 8"
4	(iii)		M1 B1	For two sets which both contain "1" and all (4) elements' inverses One subgroup of order 4	
		{1,13, 9, 17} and {1, 3, 9, 7}	A1 M1	for correspondence of "their" elements of same order	
		$1 \leftrightarrow 1, 9 \leftrightarrow 9, 3 \leftrightarrow 13, 7 \leftrightarrow 17$	A1 [5]	or $3 \leftrightarrow 17, 7 \leftrightarrow 13$	

Question	Answer	Marks	Guida	nce
5	AE: $\lambda^2 + 5\lambda + 6 = 0$			
	$\lambda = -2, -3$	B1		
	CF: $Ae^{-2x} + Be^{-3x}$	B1ft		
	$PI: y = a e^{-x}$	B1ft		
	$ae^{-x} - 5ae^{-x} + 6ae^{-x} = e^{-x}$	M1	Differentiate and substitute	
	2a=1			
	$a=\frac{1}{2}$	A1		
	GS: $(y =) \frac{1}{2} e^{-x} + A e^{-2x} + B e^{-3x}$	A1ft		ft must be of form " $k e^{-x}$ plus a standard CF form" with 2 arbitrary constants
	$x = 0, y = 0 \Rightarrow \frac{1}{2} + A + B = 0$	M1	Use condition on GS	Must have 2 arbitrary constants
	$y' = -\frac{1}{2}e^{-x} - 2Ae^{-2x} - 3Be^{-3x}$	M1*	Differentiate their GS of form $y = k e^{-x} + A e^{mx} + B e^{nx}$ where k, m, n are non-zero constants and m, n not 1	
	$x = 0, y' = 0 \Rightarrow -\frac{1}{2} - 2A - 3B = 0$			
	$A = -1, B = \frac{1}{2}$	M1dep*	Use condition and attempt to find A, B	
	$y = \frac{1}{2}e^{-x} - e^{-2x} + \frac{1}{2}e^{-3x}$	A1	www	Must have 'y ='
		[10]		

	uestion	Answer	Marks	Guidance	
6	(i)	$l \parallel \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} \Pi \perp \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} \text{ so } \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} \bullet \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} = 0 \Rightarrow l \parallel \Pi$	M1	dot product of correct vectors = 0	
		$(1, -2, 7)$ on l but $4 \times 1 - 2 - 7 = -1 \neq 8$ so not in Π	M1	substitute point on line into Π and calculate d	
		hence l not in Π	A1	Full argument includes key components	Argument can be about a general point on line
			[3]		
6	(ii)	$ (\mathbf{r} =) \begin{pmatrix} 1 \\ -2 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} $	B1		
		closest point where meets Π $4(1+4\lambda)-(-2-\lambda)-(7-\lambda)=8$	M1	parametric form of (x, y, z) substituted into plane	
		$\Rightarrow \lambda = \frac{1}{2}$	A1ft		
		$\Rightarrow \mathbf{r} = \begin{pmatrix} 3 \\ -\frac{5}{2} \\ \frac{13}{2} \end{pmatrix}$	A1		
			[4]		
6	(iii)	$\mathbf{r} = \begin{pmatrix} 3 \\ -\frac{5}{2} \\ \frac{13}{2} \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$	B1ft	oe	must have " r ="
			[1]		

4727 Mark Scheme June 2014

	Question	n	Answer	Marks	Guidance	
7	(i)		$2i\sin\theta = e^{i\theta} - e^{-i\theta}$	B1	any equivalent form	If use z, must define it
			$2i\sin n\theta = e^{in\theta} - e^{-in\theta}$			
			$\left(2i\sin\theta\right)^5 = \left(e^{i\theta} - e^{-i\theta}\right)^5$			
			$= e^{i5\theta} - 5e^{i3\theta} + 10e^{i\theta} - 10e^{-i\theta} + 5e^{-i3\theta} - e^{-i5\theta}$	M1*	binomial expansion	can be unsimplified
			$32i\sin^5\theta = (e^{5i\theta} - e^{-5i\theta}) - 5(e^{3i\theta} - e^{-3i\theta}) + 10(e^{i\theta} - e^{-i\theta})$	M1dep*	grouping terms	Award B1 then sc M1A1 for candidates who omit this stage from otherwise complete argument
			$= 2i\sin 5\theta - 5(2i\sin 3\theta) + 10(2i\sin \theta)$			
			$= 2i\sin 5\theta - 5(2i\sin 3\theta) + 10(2i\sin \theta)$ $\sin^5 \theta = \frac{1}{16}(\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$	A1	AG	must convince on the $\frac{1}{16}$ and on the elimination of i
				[4]		
7	(ii)		$16\sin^5\theta - 10\sin\theta = \sin 5\theta - 5\sin 3\theta$	M1*	Attempts to eliminate sin5θ and sin3θ	
			$16\sin^5\theta - 6\sin\theta = 0$	A1		Or $16\sin^5\theta = 6\sin\theta$
			$\sin\theta = 0, \pm 4\sqrt{\frac{3}{8}}$	M1dep*	must have 3 values for $\sin \theta$	
			$\theta = 0, \pm 0.899$	A1		
				[4]		

)uestio	n	Answer	Marks	Guidance	
8	(i)		$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is identity	B1		
			$ \begin{pmatrix} a & -b \\ b & a \end{pmatrix}^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in G $	M1 A1	for M1, must at least get matrix in form $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$, or state existence of inverse due to non-singularity	
			$ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} = \begin{pmatrix} ac - bd & -bc - ad \\ bc + ad & ac - bd \end{pmatrix} $	M1		
			and $(ac - bd)^{2} + (bc + ad)^{2} = a^{2}c^{2} + b^{2}d^{2} + b^{2}c^{2} + a^{2}d^{2}$ $= (a^{2} + b^{2})(c^{2} + d^{2}) \neq 0$	M1 A1 [6]	Must not attempt to prove commutativity in (i)	
8	(ii)		$ \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} ac - bd & -bc - ad \\ bc + ad & ac - bd \end{pmatrix} $	M1		must also consider matrices reversed, but may be seen in (i)
			$= \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} $ so commutative	A1		
				[2]		
8	(iii)		$ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} $	M1	g^2 must be correct	
			$ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	M1	allow 1 error in getting g^4	
			order 4	A1 [3]		